Guaranteed error estimates for finite element discretizations of Helmholtz problems

 $\underline{\mathsf{T.\ Chaumont\text{-}Frelet}}^{\star,\dagger}$, A. $\mathsf{Ern}^{\ddagger,\S}$, M. $\mathsf{Vohral}(k^{\S,\ddagger}$

June 17,2020

^{*}Inria Sophia-Antipolis, †Laboratoire J.A. Dieudonné, ‡CERMICS, §Inria Paris

Motivations

Motivations

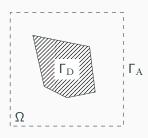
Model problem

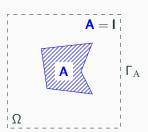
Model problem

Given $f: \Omega \to \mathbb{C}$, find $u: \Omega \to \mathbb{C}$ such that

$$\left\{ \begin{array}{rcl} -\omega^2 \mu \textbf{\textit{u}} - \boldsymbol{\nabla} \cdot (\boldsymbol{\mathsf{A}} \boldsymbol{\nabla} \textbf{\textit{u}}) &=& \mu \textbf{\textit{f}} & \text{ in } \Omega, \\ \textbf{\textit{u}} &=& 0 & \text{ on } \Gamma_D, \\ \boldsymbol{\mathsf{A}} \boldsymbol{\nabla} \textbf{\textit{u}} \cdot \textbf{\textit{n}} - i \omega \gamma \textbf{\textit{u}} &=& 0 & \text{ on } \Gamma_A \end{array} \right.$$

where μ , **A** and γ are given coefficients strictly positive coefficients.





2

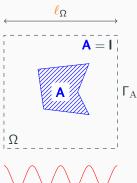
What do I mean by high-frequency?

The physical meaning of μ and $\bf A$ depends on the application, but the wavespeed is always given by:

$$c := \sqrt{rac{\sigma_{\mathsf{min}}(\mathsf{A})}{\mu}}$$

The (minimal) wavelength is then given by:

$$\lambda := \frac{2\pi}{\omega} c_{\mathsf{min}}.$$



The "important" quantity is $N_{\lambda}:=\ell_{\Omega}/\lambda$. High-frequency means that

$$\frac{\omega\ell_{\Omega}}{c_{\min}}\simeq N_{\lambda}$$

is "large" (a few tens or hundreds).

Variational formulation

Recall the Helmholtz problem in strong form

$$\left\{ \begin{array}{rcl} -\omega^2 \mu \textbf{\textit{u}} - \boldsymbol{\nabla} \cdot (\mathbf{A} \boldsymbol{\nabla} \textbf{\textit{u}}) &=& \mu \textbf{\textit{f}} & \text{ in } \Omega, \\ \textbf{\textit{u}} &=& 0 & \text{ on } \Gamma_D, \\ \mathbf{A} \boldsymbol{\nabla} \textbf{\textit{u}} \cdot \textbf{\textit{n}} - i\omega \gamma \textbf{\textit{u}} &=& 0 & \text{ on } \Gamma_A. \end{array} \right.$$

Assuming $f \in L^2(\Omega)$, we seek $u \in H^1_D(\Omega)$ such that

$$b(\mathbf{u}, \mathbf{v}) = (\mu \mathbf{f}, \mathbf{v}) \quad \forall \mathbf{v} \in H^1_{\mathbf{D}}(\Omega),$$

with

$$b(\mathbf{u}, \mathbf{v}) := -\omega^2(\mu \mathbf{u}, \mathbf{v})_{\Omega} - i\omega(\gamma \mathbf{u}, \mathbf{v})_{\Gamma_{\mathbf{A}}} + (\mathbf{A} \nabla \mathbf{u}, \nabla \mathbf{v})_{\Omega}.$$

4

Finite element approximation

We consider a mesh \mathcal{T}_h of Ω into tetrahedral element K.

The elements $K \in \mathcal{T}_h$ are "small" $(h_K := \operatorname{diam} K \leq h)$.

The coefficients μ, γ, \mathbf{A} are constant inside each element/face.

We introduce a "finite element" discretization space

$$V_{h} := \left\{ v_{h} \in H^{1}_{D}(\Omega) \mid v_{h}|_{K} \in \mathbb{P}_{p}(K) \ \forall K \in \mathcal{T}_{h} \right\}$$

with $p \ge 1$.

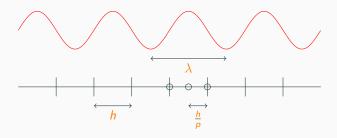
P.G. Ciarlet, 2002.

What do I mean by refined mesh?

Whan I am saying that "the mesh is fine", I mean that

$$N_{\mathrm{dofs}/\lambda} = \lambda \left/ \frac{h}{p} \simeq \left(\frac{\omega h}{c_{\min} p} \right)^{-1} \right.$$

is large.



Finite element approximation

Recall that u is the only element of $H^1_D(\Omega)$ such that

$$b(\mathbf{u}, v) = (\mu \mathbf{f}, v) \quad \forall v \in H^1_{\mathrm{D}}(\Omega).$$

Analogously, we seek a discrete a discrete solution $u_h \in V_h$ such that

$$b(\mathbf{u}_h, \mathbf{v}_h) = (\mu f, \mathbf{v}_h) \quad \forall \mathbf{v}_h \in V_h. \tag{1}$$

Problem (1) corresponds to a finite dimensional linear system, that we can numerically solve.

In this talk, we are especially interested in measuring the error

$$e_h := u - u_h$$

7

Motivations

A priori error estimates

A priori error estimates

A priori estimates

Assume that $\omega h/c_{\min}p \leq \mathscr{C}_1$, then

$$\|\nabla e_h\|_{\mathbf{A},\Omega} \leq \mathscr{C}_2 \left(\frac{\omega h}{c_{\min} p}\right)^p.$$

- F. Ihlenburg and I. Babuška, SIAM J. Numer. Anal., 1997.
- J.M. Melenk and S.A. Sauter, Math. Comp., 2010.
- T. Chaumont-Frelet and S. Nicaise, IMA J. Numer. Anal., 2019.

Some limitations:

- The above result requires important regularity assumptions.
- The error estimate is not always applicable.
- The constants \mathscr{C}_1 and \mathscr{C}_2 are *not* computable in general.

A priori error estimates

A priori estimates provide qualitative upper bounds.

They are important as they show that the method converges.

They also indicate how fast the convergence happens.

They are not suited to *quantitatively* estimate the error in practice.

Motivations

A posteriori error estimation

A posteriori estimates

(ideal) A posteriori estimates

$$\|\nabla e_h\|_{\mathbf{A},\Omega} \leq \eta$$

Here η is a fully-computable real number called an "error estimator".

This quantity is computed as a post-processing of u_h , i.e. $\eta = \eta(u_h)$.

There is no generic constants. We have a guaranteed error estimate.

Outline

- 1 Low frequencies
- 2 High frequencies
- 3 Controlling the pre-factors
- 4 Numerical illustrations

Low frequencies

The low frequency case

We first consider the low frequency limit where $\omega = 0$.

The problem then reads: find $\mathbf{u}:\Omega\to\mathbb{C}$ such that

$$\left\{ \begin{array}{rcl} -\boldsymbol{\nabla}\cdot(\boldsymbol{\mathsf{A}}\boldsymbol{\nabla}\boldsymbol{\mathsf{u}}) &=& \mu\boldsymbol{\mathsf{f}} & \text{in }\Omega,\\ \boldsymbol{\mathsf{u}} &=& 0 & \text{on }\Gamma_{\mathrm{D}},\\ \boldsymbol{\mathsf{A}}\boldsymbol{\nabla}\boldsymbol{\mathsf{u}}\cdot\boldsymbol{\mathsf{n}} &=& 0 & \text{on }\Gamma_{\mathrm{A}}. \end{array} \right.$$

For the sake of simplicity, we will assume that $f = f_h \in \mathbb{P}_p(\mathcal{T}_h)$.

Variational formulation and discrete solution

Consider the sesquilinear form

$$a(\mathbf{u}, \mathbf{v}) = (\mathbf{A} \nabla \mathbf{u}, \nabla \mathbf{v})_{\Omega}, \quad \mathbf{u}, \mathbf{v} \in H^1_{\Gamma_{\mathcal{D}}}(\Omega).$$

We can characterize \underline{u} as the unique element of $H^1_{\Gamma_{\Omega}}(\Omega)$ such that

$$a(\mathbf{u}, \mathbf{v}) = (\mu f_h, \mathbf{v})_{\Omega}$$

for all $v \in H^1_{\Gamma_D}(\Omega)$.

 u_h is the unique element of V_h satisfying

$$a(\mathbf{u}_h, \mathbf{v}_h) = (\mu \mathbf{f}_h, \mathbf{v}_h)_{\Omega}$$

for all $v_h \in V_h$.

Low frequencies

Key ideas behind a posteriori estimation

Key ideas

Second-order problems typically arise from two physical laws, e.g., "Faraday's law + Gauss' law = Poisson problem".

The continuous solution u is uniquely determined by the condition that

$$\mathbf{u} \in H^1(\Omega), \qquad \mathbf{u} = 0 \text{ on } \Gamma_D$$
 (2a)

and for the "flux" $\sigma := -\mathbf{A} \nabla \mathbf{u} \in \mathbf{H}(\operatorname{div}, \Omega)$

$$\boldsymbol{\sigma} \cdot \boldsymbol{n} = 0 \text{ on } \Gamma_{A}, \qquad \boldsymbol{\nabla} \cdot \boldsymbol{\sigma} = \mu \boldsymbol{f_h} \text{ in } \Omega.$$
 (2b)

The discrete solution u_h satisfies (2a) but not (2b) in general.

Key ideas

Consider the minimization problem

$$\begin{split} \boldsymbol{\sigma} := \arg \min_{ \substack{\boldsymbol{\tau} \in \boldsymbol{H}(\operatorname{div},\Omega) \\ \boldsymbol{\tau} \cdot \boldsymbol{n} = 0 \text{ on } \Gamma_{\mathrm{A}} \\ \boldsymbol{\nabla} \cdot \boldsymbol{\tau} = \mu f_{h} \text{ in } \Omega} } \| \boldsymbol{A}^{-1} \boldsymbol{\tau} + \boldsymbol{\nabla} \boldsymbol{u}_{h} \|_{\boldsymbol{A},\Omega}. \end{aligned}$$

If the above minimum is 0, then $\sigma = -\mathbf{A}\nabla u_h \in \mathbf{H}(\operatorname{div},\Omega)$ with

$$\boldsymbol{\sigma} \cdot \boldsymbol{n} = 0$$
 on Γ_{A} $\nabla \cdot \boldsymbol{\sigma} = \mu f_{h}$ in Ω

i.e. u_h satisfies (2b), which implies that $u = u_h$.

Otherwise, it measures how "non-conforming" u_h is.

Low frequencies

The Prager-Synge theorem

Prager-Synge inequality

Assume that $\sigma \in \mathbf{H}(\text{div}, \Omega)$ satisfies

$$\boldsymbol{\sigma} \cdot \boldsymbol{n} = 0 \text{ on } \Gamma_{A}, \qquad \nabla \cdot \boldsymbol{\sigma} = \mu f_{h} \text{ in } \Omega.$$

 $\sigma = -\mathbf{A}\nabla \mathbf{u}$ is one example.

Then

$$\begin{aligned} a(\mathbf{e}_h, v) &= (\mu f_h, v)_{\Omega} - (\mathbf{A} \nabla u_h, \nabla v)_{\Omega} \\ &= (\nabla \cdot \boldsymbol{\sigma}, v)_{\Omega} - (\mathbf{A} \nabla u_h, \nabla v)_{\Omega} \\ &= -(\boldsymbol{\sigma} + \mathbf{A} \nabla u_h, \nabla v)_{\Omega}. \end{aligned}$$

Prager-Synge inequality

$$|a(e_h, v)| \leq ||\mathbf{A}^{-1}\boldsymbol{\sigma} + \nabla u_h||_{\mathbf{A},\Omega} ||\nabla v||_{\mathbf{A},\Omega}$$

Upper bound via equilibrated flux

Recall that whenever $\nabla \cdot \boldsymbol{\sigma} = \mu f_h$ in Ω and $\boldsymbol{\sigma} \cdot \boldsymbol{n} = 0$ on Γ_A

$$|a(e_h, v)| \leq ||\mathbf{A}^{-1}\sigma + \nabla u_h||_{\mathbf{A},\Omega} ||\nabla v||_{\mathbf{A},\Omega} \quad \forall v \in H^1_{\Gamma_D}(\Omega).$$

Picking in particular $v = e_h$, we have

$$\|\nabla e_h\|_{\mathbf{A},\Omega}^2 = |a(e_h,e_h)| \leq \|\mathbf{A}^{-1}\boldsymbol{\sigma} + \nabla u_h\|_{\mathbf{A},\Omega}\|\nabla e_h\|_{\mathbf{A},\Omega}.$$

Guaranteed upper bound

$$\|\nabla e_h\|_{\mathbf{A},\Omega} \leq \|\mathbf{A}^{-1}\boldsymbol{\sigma} + \nabla u_h\|_{\mathbf{A},\Omega}$$

W. Prager and J.L. Synge, Quart. Appl. Math., 1947.

Low frequencies

Practical flux construction

Practical flux construction

Equilibrated fluxes satisfy $\nabla \cdot \boldsymbol{\sigma} = \mu f_h$ in Ω and $\boldsymbol{\sigma} \cdot \boldsymbol{n} = 0$ on Γ_A . They readily provide guaranteed error bounds.

Here, because $\mu f_h \in \mathbb{P}_p(\mathcal{T}_h)$ we can actually find discrete fluxes σ_h .

The correct tool to do that is the Raviart-Thomas finite element space

$$\boldsymbol{W}_{\boldsymbol{h}} := \left\{ \boldsymbol{w}_{\boldsymbol{h}} \in \boldsymbol{H}_{\Gamma_{\mathrm{A}}}(\mathrm{div},\Omega) \mid \boldsymbol{w}_{\boldsymbol{h}}|_{K} \in \left[\mathbb{P}_{\boldsymbol{p}}(K)\right]^{3} + \boldsymbol{x}\mathbb{P}_{\boldsymbol{p}-1}(K) \right\}.$$

P.A. Raviart and J.M. Thomas, 1977.

How to select the flux?

We are going to select a discrete flux $\sigma_h \in W_h$.

The "equilibration" constraint on the flux is

$$\nabla \cdot \boldsymbol{\sigma}_h = \mu f_h$$
 in Ω .

The estimate the flux provides us is

$$\|\nabla \mathbf{e}_h\|_{\mathbf{A},\Omega} \leq \|\mathbf{A}^{-1}\boldsymbol{\sigma}_h + \nabla \boldsymbol{u}_h\|_{\mathbf{A},\Omega}.$$

Optimal discrete flux

Recall that $\sigma_h \in \boldsymbol{W}_h$ has to satisfy

$$\nabla \cdot \boldsymbol{\sigma}_h = \mu f_h$$
 in Ω

and gives us

$$\|\nabla e_h\|_{\mathbf{A},\Omega} \leq \|\mathbf{A}^{-1}\boldsymbol{\sigma}_h + \nabla u_h\|_{\mathbf{A},\Omega}.$$

The "optimal" choice is then

$$oldsymbol{\sigma_h} := \arg\min_{\substack{oldsymbol{ au_h} \in oldsymbol{W}_h \ oldsymbol{ au_h} = oldsymbol{\mu}_h = oldsymbol{\mu}_h \ \text{in } \Omega} \|oldsymbol{\mathsf{A}}^{-1} oldsymbol{ au}_h + oldsymbol{
abla} oldsymbol{u}_h \|_{oldsymbol{\mathsf{A}},\Omega}.$$

How to compute it and how expensive it is?

After introducing a Lagrange multiplier, there exists a unique pair $(\sigma_h, q_h) \in W_h \times \mathbb{P}_p(\mathcal{T}_h)$ such that

$$\left\{ \begin{array}{rcl} (\mathbf{A}^{-1}\boldsymbol{\sigma}_h,\boldsymbol{w}_h)_{\Omega} + (\boldsymbol{q}_h,\nabla\cdot\boldsymbol{w}_h)_{\Omega} & = & -(\nabla\boldsymbol{u}_h,\boldsymbol{w}_h)_{\Omega} & \forall \boldsymbol{w}_h \in \boldsymbol{W}_h, \\ (\nabla\cdot\boldsymbol{\sigma}_h,r_h) & = & (\mu f_h,r_h) & \forall r_h \in \mathbb{P}_p(\mathcal{T}_h). \end{array} \right.$$

This square linear system can be solved to compute the optimal flux.

Unfortunately, it is more expensive than solving the original problem, so we avoid that in practice by using a localization trick.

P. Destuynder and B. Métivet, Math. Comp., 1999.

At the continuous level, the ideal flux is $\sigma := -\mathbf{A}\nabla \mathbf{u}$.

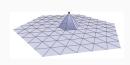
A characterization is

The "optimal" flux directly mimicks this definition at the discrete level

$$\begin{array}{l} \pmb{\sigma_h} := \arg \min_{\substack{\pmb{\tau_h} \in \pmb{W}_h \\ \pmb{\nabla} \cdot \pmb{\tau_h} = \mu f_h \text{ in } \Omega}} \| \pmb{\mathsf{A}}^{-1} \pmb{\tau_h} + \pmb{\nabla} \pmb{u_h} \|_{\pmb{\mathsf{A}},\Omega}. \end{array}$$

Consider the set of "hat functions" $\{\psi^{\it a}\}_{\it a\in\mathcal{V}_{\it h}}$ of the mesh. We then have

$$\sum_{\mathbf{a}\in\mathcal{V}_{\mathbf{h}}}\psi^{\mathbf{a}}=1.$$



The ideal flux $\sigma := -\mathbf{A} \nabla u$ can be decomposed as

$$\sigma = \sum_{a \in \mathcal{V}_h} \sigma^a, \qquad \sigma^a = -\psi^a \mathsf{A} \nabla u.$$

Easy computations show that

$$\sigma^a \cdot \mathbf{n} = 0$$
 on $\partial \omega^a$ $\nabla \cdot \sigma^a = \psi^a \mu f_h - \mathbf{A} \nabla \mathbf{u} \cdot \nabla \psi^a$ in ω^a

We have shown that

$$oldsymbol{\sigma} = \sum_{oldsymbol{a} \in \mathcal{V}_b} oldsymbol{\sigma}^{oldsymbol{a}}$$

and

$$\sigma^{a} = \arg \min_{ \substack{\boldsymbol{\tau} \in H_{0}(\operatorname{div}, \omega^{a}) \\ \nabla \cdot \boldsymbol{\tau} = \psi^{a} \mu f_{h} - \mathbf{A} \nabla u \cdot \nabla \psi^{a} \text{ in } \omega^{a} } } \| \mathbf{A}^{-1} \boldsymbol{\tau} + \nabla \underline{\boldsymbol{u}} \|_{\mathbf{A}, \omega^{a}}.$$

We can mimick that on the discrete level!

We thus set

$$oldsymbol{\sigma}_h := \sum_{oldsymbol{a} \in \mathcal{V}_h} oldsymbol{\sigma}_h^{oldsymbol{a}}$$

with

The compatibility condition

$$(\psi^{\textit{a}}\mu\textit{f}_{\textit{h}}-\textbf{A}\nabla\textit{u}_{\textit{h}}\cdot\nabla\psi^{\textit{a}},1)_{\omega^{\textit{a}}}=(\mu\textit{f}_{\textit{h}},\psi^{\textit{a}})_{\Omega}-(\textbf{A}\nabla\textit{u}_{\textit{h}},\nabla\psi^{\textit{a}})_{\Omega}=0$$

holds true since u_h is the discrete solution and $\psi^a \in V_h$.

Summary of the localization process

Step 1: solve a set of small, uncoupled linear systems

$$\begin{split} \pmb{\sigma_h^a} &:= \arg \min_{\substack{ \pmb{\tau}_h \in \pmb{H}_0(\operatorname{div}, \omega^a) \cap \pmb{W}_h \\ \pmb{\nabla} \cdot \pmb{\tau}_h = \psi^a \mu f_h - \pmb{A} \nabla \pmb{u}_h \cdot \pmb{\nabla} \psi^a \text{ in } \omega^a}} \| \pmb{A}^{-1} \pmb{\tau}_h + \pmb{\nabla} \pmb{u}_h \|_{\pmb{A}, \omega^a}. \end{aligned}$$

Step 2: assemble these local contributions

$$\sigma_h := \sum_{a \in \mathcal{V}_h} \sigma_h^a$$
.

Step 3: compute the estimator

$$\eta := \|\mathbf{A}^{-1}\boldsymbol{\sigma}_h + \nabla \boldsymbol{u}_h\|_{\mathbf{A},\Omega}.$$

Step 4: enjoy the guaranteed estimate

$$\|\nabla e_h\|_{\mathbf{A},\Omega} \leq \eta.$$

Low frequencies

Efficiency

Efficiency

For time reasons, I will not give any proofs, but we can show that

$$\eta \leq C_{\text{eff}} \|\nabla \mathbf{e}_h\|_{\mathbf{A},\Omega},$$

where C_{eff} only depends on:

- the "flatness" of the tetrahedra in the mesh,
- the "contrasts" in the coefficients.

A nice aspect is that C_{eff} does not depend on p.

P. Braess, V. Pillwein and J. Schöberl, CMAME, 2009.

A. Ern and M. Vohralik, Math. Comp., 2020.

Low frequencies

Takeaways

Takeaways

An equilibrated flux is an object $\sigma \in H(\text{div}, \Omega)$ such that

$$\boldsymbol{\sigma} \cdot \boldsymbol{n} = 0 \text{ on } \Gamma_{A}$$
 $\nabla \cdot \boldsymbol{\sigma} = \mu f_{h} \text{ in } \Omega.$

There exist efficient algorithms to build a discrete flux $\sigma_h \in W_h$.

The guaranteed error estimate

$$\|\nabla e_h\|_{\mathbf{A},\Omega} \leq \eta$$

holds true with

$$\eta := \|\mathbf{A}^{-1}\boldsymbol{\sigma}_h + \nabla \boldsymbol{u}_h\|_{\mathbf{A},\Omega}.$$

This bound cannot be too loose:

$$\eta \leq C_{\text{eff}} \|\nabla e_h\|_{\mathbf{A},\Omega}.$$

High frequencies

The high frequency case

Back to our original problem

$$\left\{ \begin{array}{rcl} -\omega^2 \mu \textbf{\textit{u}} - \boldsymbol{\nabla} \cdot (\mathbf{A} \boldsymbol{\nabla} \textbf{\textit{u}}) &=& \mu \textbf{\textit{f}} & \text{in } \Omega, \\ \textbf{\textit{u}} &=& 0 & \text{on } \Gamma_D, \\ \mathbf{A} \boldsymbol{\nabla} \textbf{\textit{u}} \cdot \textbf{\textit{n}} - i \omega \gamma \textbf{\textit{u}} &=& 0 & \text{on } \Gamma_A. \end{array} \right.$$

We introduce

$$b(\mathbf{u}, \mathbf{v}) := -\omega^2(\mu \mathbf{u}, \mathbf{v})_{\Omega} - i\omega(\gamma \mathbf{u}, \mathbf{v})_{\Gamma_{\mathbf{A}}} + (\mathbf{A} \nabla \mathbf{u}, \nabla \mathbf{v})_{\Omega}.$$

Energy norm and lack of coercivity

We will consider the "balanced" norm

$$|\!|\!| v |\!|\!|_{\boldsymbol{\omega},\Omega}^2 := \boldsymbol{\omega}^2 |\!| v |\!|\!|_{\boldsymbol{\mu},\Omega}^2 + |\!| \boldsymbol{\nabla} v |\!|\!|_{\boldsymbol{A},\Omega}^2.$$

The sesquilinear form b is not coercive.

Instead we have the "Gårding" inequality

$$\operatorname{Re} b(v, v) = \|\nabla v\|_{\mathbf{A}, \Omega}^2 - \omega^2 \|v\|_{\mu, \Omega}^2 = \|v\|_{\omega, \Omega}^2 - 2\omega^2 \|v\|_{\mu, \Omega}^2.$$

High frequencies

Flux equilibration

Definition of an equilibrated flux

Letting $\sigma := -\mathbf{A} \nabla \mathbf{u}$, we have

$$\boldsymbol{\sigma} \cdot \boldsymbol{n} = -i\omega \gamma \boldsymbol{u}$$
 on $\Gamma_{\rm A}$ $\nabla \cdot \boldsymbol{\sigma} = \mu f_h + \omega^2 \mu \boldsymbol{u}$ in Ω .

Hence, natural requirements for σ_h are

$$\boldsymbol{\sigma}_h \cdot \boldsymbol{n} = -i\omega\gamma \boldsymbol{u}_h$$
 on Γ_A $\nabla \cdot \boldsymbol{\sigma}_h = \mu f_h + \omega^2 \mu \boldsymbol{u}_h$ in Ω .

The "standard" reconstruction algorithms directly extend.

Prager-Synge inequality

Let $v \in H^1_{\Gamma_{\mathrm{D}}}(\Omega)$. We have

$$b(\mathbf{e}_{h}, v) = (\mu \mathbf{f}_{h}, v)_{\Omega} - b(\mathbf{u}_{h}, v)$$

$$= (\mu \mathbf{f}_{h} + \omega^{2} \mu \mathbf{u}_{h}, v)_{\Omega} + i\omega(\gamma \mathbf{u}_{h}, v)_{\Gamma_{A}} - (\mathbf{A} \nabla \mathbf{u}_{h}, \nabla v)_{\Omega}$$

$$= (\nabla \cdot \boldsymbol{\sigma}_{h}, v)_{\Omega} - (\boldsymbol{\sigma}_{h} \cdot \mathbf{n}, v)_{\Gamma_{A}} - (\mathbf{A} \nabla \mathbf{u}_{h}, \nabla v)_{\Omega}$$

$$= -(\boldsymbol{\sigma}_{h} + \mathbf{A} \nabla \mathbf{u}_{h}, \nabla v)_{\Omega}.$$

Prager-Synge inequality

$$|b(e_h, v)| \leq \frac{\eta}{\|\nabla v\|_{\mathbf{A},\Omega}} \quad \forall v \in H^1_{\Gamma_{\mathcal{D}}}(\Omega)$$

So far, so good!

What's the matter?

Here, we do not have

$$\|\nabla e_h\|_{\mathbf{A},\Omega}^2 \leq |b(e_h,e_h)|,$$

which is a major issue!

Instead, we only have the "Gårding" inequality

$$\operatorname{Re} b(e_h, e_h) \geq \left\| e_h \right\|_{\omega, \Omega}^2 - 2\omega^2 \left\| e_h \right\|_{\mu, \Omega}^2.$$

High frequencies

A coarse error estimate

Stability constant

For $g \in L^2(\Omega)$, let $\mathscr{S}^{\star}g$ denote the unique element of $H^1_{\Gamma_{\mathbb{D}}}(\Omega)$ such that

$$b(w, \mathscr{S}^*g) = 2\omega^2(\mu w, g)_{\Omega} \quad \forall w \in H^1_{\Gamma_{\mathcal{D}}}(\Omega)$$

and let

$$\mathscr{C}_{\mathrm{st}} := rac{1}{\omega} \max_{\substack{oldsymbol{g} \in L^2(\Omega) \ \|oldsymbol{g}\|_{\mu,\Omega} = 1}} \|oldsymbol{
abla} (\mathscr{S}^{\star} oldsymbol{g})\|_{oldsymbol{\mathsf{A}},\Omega}.$$

 $\mathscr{C}_{\mathrm{st}}$ is the best constant such that

$$\|\nabla(\mathscr{S}^*g)\|_{\mathbf{A},\Omega} \leq \mathscr{C}_{\mathrm{st}} \frac{\omega}{\|g\|_{\mu,\Omega}} \quad \forall g \in L^2(\Omega).$$

It is closely related to resolvant estimates.

Making up for the lack of coercivity

By definition, we have

$$b(w, \mathscr{S}^* e_h) = 2\omega^2(\mu w, e_h) \quad \forall w \in H^1_{\Gamma_D}(\Omega).$$

Hence, in particular,

$$b(\mathbf{e}_h, \mathscr{S}^* \mathbf{e}_h) = 2\omega^2 \|\mathbf{e}_h\|_{\mu,\Omega}^2,$$

which is exactly the "bad" term the Gårding inequality:

$$\operatorname{Re} b(\boldsymbol{e}_h, \boldsymbol{e}_h) = \|\boldsymbol{e}_h\|_{\omega,\Omega}^2 - 2\omega^2 \|\boldsymbol{e}_h\|_{\mu,\Omega}^2.$$

Making up for the lack of coercivity

Using Prager-Synge inequality, we have

$$\|\|\boldsymbol{e}_h\|\|_{\omega,\Omega}^2 = \operatorname{Re} b(\boldsymbol{e}_h,\boldsymbol{e}_h + \mathscr{S}^*\boldsymbol{e}_h) \le \eta \|\nabla(\boldsymbol{e}_h + \mathscr{S}^*\boldsymbol{e}_h)\|_{\mathbf{A},\Omega}.$$

It follows that

$$\begin{split} \left\| \underbrace{\boldsymbol{e}_h} \right\|_{\boldsymbol{\omega},\Omega}^2 &\leq \boldsymbol{\eta} \left(\| \boldsymbol{\nabla} \boldsymbol{e}_h \|_{\boldsymbol{A},\Omega} + \| \boldsymbol{\nabla} (\mathscr{S}^\star \boldsymbol{e}_h) \|_{\boldsymbol{A},\Omega} \right) \\ &\leq \boldsymbol{\eta} \left(\| \boldsymbol{\nabla} \boldsymbol{e}_h \|_{\boldsymbol{A},\Omega} + \mathscr{C}_{\operatorname{st}} \boldsymbol{\omega} \| \boldsymbol{e}_h \|_{\boldsymbol{\mu},\Omega} \right) \\ &\leq \boldsymbol{\eta} \max(1,\mathscr{C}_{\operatorname{st}}) \left\| \boldsymbol{e}_h \right\|_{\boldsymbol{\omega},\Omega}, \end{split}$$

and

$$\|\mathbf{e}_{h}\|_{\omega,\Omega} \leq \max(1,\mathscr{C}_{\mathrm{st}})_{\boldsymbol{\eta}}.$$

Coarse error estimate

We obtained the following error estimate:

Coarse error estimate

$$|\!|\!|\!| e_h |\!|\!|\!| \leq \max(1,\mathscr{C}_{\operatorname{st}}) \eta$$

 $\mathscr{C}_{\mathrm{st}}$ is the best constant such that:

Stability constant

$$\|\nabla(\mathscr{S}^{\star}g)\|_{\mathbf{A},\Omega} \leq \mathscr{C}_{\mathrm{st}} \frac{\omega}{\|g\|_{\mu,\Omega}} \qquad \forall g \in L^{2}(\Omega).$$

High frequencies

Efficiency

Efficiency

We can show that

$$\eta \leq C_{\text{eff}} \left(1 + \max_{K \in \mathcal{T}_h} \frac{\omega h_K}{c_{\min K} p} \right) |\!|\!| e_h |\!|\!|_{\omega, \Omega},$$

where $c_{\min K}$ is the wavespeed in the element K.

For any reasonable discretization, we have

$$\frac{\omega h_K}{c_{\min K} p} \le 1,$$

so that in practice

$$\eta \leq C_{\text{eff}} |\!|\!| e_h |\!|\!|_{\omega,\Omega},$$

where $C_{\rm eff}$ only depends on the elements "flatness" and the contrasts.

T. Chaumont-Frelet, A. Ern and M. Vohralík, Numer. Math., 2021.

W. Dörfler, S. Sauter, Comput. Meth. Appl. Math., 2013.

The problem with the coarse error estimate

Recall that

$$\eta \leq C_{\mathrm{eff}} \, \| e_h \|_{\omega,\Omega} \qquad \| e_h \|_{\omega,\Omega} \leq \max(1,\mathscr{C}_{\mathrm{st}}) \eta.$$

We have $C_{\rm eff} \simeq 1$ and $\mathscr{C}_{\rm st} \gtrsim \frac{\omega \ell_{\Omega}}{c_{\rm min}}$, so that

$$\eta \lesssim |\!|\!|\!| e_h |\!|\!|\!|_{\omega,\Omega} \lesssim \frac{\omega \ell_\Omega}{c_{\min}} \eta.$$

In practice, the coarse error estimate will largely overestimate the error in the high frequency regime.

High frequencies

. ..g.. .. equeneres

Sharp error estimate

The approximation factor

We introduce

$$\mathscr{C}_{\mathrm{ap}} := rac{1}{\omega} \max_{\substack{g \in L^2(\Omega) \ \|g\|_{\mu,\Omega} = 1}} \min_{\mathsf{v}_h \in V_h} \|\nabla (\mathscr{S}^\star g - \mathsf{v}_h)\|_{\mathbf{A},\Omega}.$$

Approximability

For all $g \in L^2(\Omega)$, there exists $v_h^* \in V_h$ such that

This was called η in Markus' talk.

It's better than the stability constant!

Recall that

$$\mathscr{C}_{\mathrm{ap}} := \max_{\substack{\mathbf{g} \in L^2(\Omega) \\ \|\mathbf{g}\|_{\boldsymbol{\mu},\Omega} = 1}} \min_{\mathbf{v}_h \in V_h} \underline{\boldsymbol{\omega}} \, \|\!\!|\!\!| \mathscr{S} \mathbf{g} - \mathbf{v}_h \|\!\!|\!\!|_{\boldsymbol{\omega},\Omega}$$

since we can take $v_h = 0$, we have

$$\mathscr{C}_{\mathrm{ap}} \leq \max_{\substack{\mathbf{g} \in L^2(\Omega) \\ \|\mathbf{g}\|_{\boldsymbol{\mu},\Omega} = 1}} \mathbf{\omega} \, \| \mathscr{S} \mathbf{g} \|_{\boldsymbol{\omega},\Omega} =: \mathscr{C}_{\mathrm{st}}.$$

Besides, standard approximability results for FEM show that

$$\mathscr{C}_{\mathrm{ap}} \leq \mathscr{C} \left(\frac{1}{\rho} \frac{h}{\ell_{\Omega}} \right)^{s}$$

for some s>0, so that $\mathscr{C}_{\mathrm{ap}}\to 0$.

Using Galerkin orthogonality

Recall that

$$\|\mathbf{e}_h\|_{\omega,\Omega}^2 = \operatorname{Re} b(\mathbf{e}_h, \mathbf{e}_h + \mathscr{S}^* \mathbf{e}_h).$$

By Galerkin orthogonality, we have

$$\begin{split} \left\| \mathbf{e}_h \right\|_{\omega,\Omega}^2 &= \operatorname{Re} b(\mathbf{e}_h, \mathbf{e}_h) + \operatorname{Re} b(\mathbf{e}_h, \mathscr{S}^{\star} \mathbf{e}_h) \\ &= \operatorname{Re} b(\mathbf{e}_h, \mathbf{e}_h) + \operatorname{Re} b(\mathbf{e}_h, \mathscr{S}^{\star} \mathbf{e}_h - \mathbf{v}_h^{\star}) \\ &\leq \eta \left(\| \nabla \mathbf{e}_h \|_{\mathbf{A},\Omega} + \| \nabla (\mathscr{S}^{\star} \mathbf{e}_h - \mathbf{v}_h^{\star}) \|_{\mathbf{A},\Omega} \right) \\ &\leq \eta \max(1, \mathscr{C}_{\mathrm{ap}}) \left\| \mathbf{e}_h \right\|_{\omega,\Omega}. \end{split}$$

Sharp error estimate

Sharp error estimate

$$|\!|\!|\!|\!|\!|_{\boldsymbol{e}_{\boldsymbol{h}}}|\!|\!|\!|_{\boldsymbol{\omega},\Omega} \leq \max(1,\mathscr{C}_{\mathrm{ap}})_{\boldsymbol{\eta}}.$$

Approximation factor

$$\mathscr{C}_{\mathrm{ap}} := \max_{\substack{\boldsymbol{g} \in L^2(\Omega) \\ \|\boldsymbol{g}\|_{\boldsymbol{\mu},\Omega} = 1}} \min_{\boldsymbol{v_h} \in V_h} \boldsymbol{\omega} \, \|\mathscr{S}\boldsymbol{g} - \boldsymbol{v_h}\|_{\boldsymbol{\omega},\Omega} \to 0.$$

T. Chaumont-Frelet, A. Ern and M. Vohralík, Numer. Math., 2021.

W. Dörfler, S. Sauter, Comput. Meth. Appl. Math., 2013.

High frequencies

. ...g.. . . equanoses

Takeaways

Takeways

The "equilibration" technology is the same than for low frequencies.

Corse error estimate

$$\|\mathbf{e}_{\mathbf{h}}\|_{\omega,\Omega} \leq \max(1,\mathscr{C}_{\mathrm{st}}) \eta \quad \mathscr{C}_{\mathrm{st}} \gtrsim \frac{\omega \ell_{\Omega}}{c_{\min}}$$

Sharp error estimate

$$|\!|\!|\!| \textcolor{red}{e_{\textit{h}}} |\!|\!|\!|_{\textcolor{blue}{\omega},\Omega} \leq \max(1,\mathscr{C}_{\mathrm{ap}}) \textcolor{red}{\eta} \quad \mathscr{C}_{\mathrm{ap}} \rightarrow 0$$

Efficiency

$$\eta \leq C_{ ext{eff}} \left(1 + rac{\omega h}{c_{ ext{min}} p}
ight) \left\lVert e_h
ight
Vert_{\omega,\Omega}$$

Controlling the pre-factors

Controlling the pre-factors

The stability constant $\mathscr{C}_{\mathrm{st}}$

The stability constant

The stability constant is defined by

$$\mathscr{C}_{\mathrm{st}} := \max_{\substack{\mathbf{g} \in L^2(\Omega) \\ \|\mathbf{g}\|_{\mu,\Omega} = 1}} \|\nabla (\mathscr{S}^{\star}\mathbf{g})\|_{\mathbf{A},\Omega}.$$

It is only related to the PDE, and independent of the numerical scheme.

Qualitative behaviour

It is known that we have "at least":

$$\mathscr{C}_{\mathrm{st}} \gtrsim rac{\omega \ell_{\Omega}}{c_{\mathsf{min}}}.$$

For non-trapping settings (the "easier" scenario), we have

$$\mathscr{C}_{\mathrm{st}} \lesssim rac{\omega \ell_{\Omega}}{c_{\mathrm{min}}}.$$

If strong traping happens, "extreme" behaviors can occur

$$\mathscr{C}_{\mathrm{st}} \gtrsim \exp\left(\alpha \frac{\omega \ell_{\Omega}}{c_{\min}}\right)$$

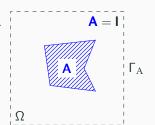
for "some" frequencies. For "most frequency"

$$\mathscr{C}_{
m st} \gtrsim \left(rac{\omega \ell_\Omega}{c_{
m min}}
ight)^eta.$$

D. Lafontaine, E.A. Spence and J. Wunsch, Comm. Pure Appl. Math. 2021

Quantitative estimate for star-shaped non-trapping obstacles

 $\Omega:=(-\ell/2,\ell/2)^3$ is a cube centered at the origin. $D\subset\Omega$ is star shaped with respect to the origin.



Assume that
$$\gamma=1$$
 and that $\mu=1$ and $\mathbf{A}=\mathbf{I}$ in $\Omega\setminus D$.

Assume that $\mu = \mu_D \ge 1$ and $\mathbf{A} = \mathbf{A}_D \le \mathbf{I}$ in D.

This discribes an obstacle made of a material with a "slow" waveseed.

Quantitative estimate for star-shaped non-trapping obstacles

Guaranteed upper bound

$$\mathscr{C}_{\mathrm{st}} \leq 6 + \frac{3 + \sqrt{3}}{\sqrt{3}} \frac{\omega \ell_{\Omega}}{c_{\mathsf{min}}}$$

The proof relies on a "Morawetz multiplier": multiply the PDE by $x \cdot \nabla u$ and integrate by parts until it works!

C.S. Morawetz, Comm. Pure Appl. Math., 1962.

J.M. Melenk, PhD thesis, 1995.

H. Barucq, T. Chaumont-Frelet and C. Gout, Math. Comp., 2016.

T. Chaumont-Frelet, A. Ern, E. Vohralik, Numer. Math. 2021.

Controlling the pre-factors

The approximation factor $\mathscr{C}_{\mathrm{ap}}$

The approximation factor

The approximation factor is defined by

$$\mathscr{C}_{\mathrm{ap}} := \max_{\substack{g \in L^2(\Omega) \\ \|g\|_{\mu,\Omega} = 1}} \min_{\substack{v_h^{\star} \in V_h}} \|\nabla (\mathscr{S}^{\star} g - v_h^{\star})\|_{\mathbf{A},\Omega}.$$

It depends on both the PDE and the approximation space V_h .

Assuming that $\mathbf{A} = \mathbf{I}$, Ω is convex, and \mathscr{C}_{st} is known, we can control it.

Idea one: explicit interpolation error

R. Arcangeli and J.L. Gout, RAIRO Numer. Anal., 1976.

If $v \in H^2(\Omega)$, let $I_h^1 v \in V_h$ denotes its first-order Lagrange interpolant:

$$\|\nabla(v-I_{h}^{1}v)\|_{\mathbf{A},\Omega} \leq \mathscr{C}_{\mathcal{T},i}h\|\nabla^{2}v\|_{\Omega},$$

with a constant $\mathscr{C}_{\mathcal{T},i}$ that is easily computable.

We then have

$$\begin{split} \mathscr{C}_{\mathrm{ap}} &:= \max_{\substack{g \in L^2(\Omega) \\ \|g\|_{\mu,\Omega} = 1}} \min_{\substack{v_h^{\star} \in V_h \\ \|g\|_{\mu,\Omega} = 1}} \|\nabla (\mathscr{S}^{\star} g - v_h^{\star})\|_{\mathbf{A},\Omega} \\ &\leq \max_{\substack{g \in L^2(\Omega) \\ \|g\|_{\mu,\Omega} = 1}} \|\nabla (\mathscr{S}^{\star} g - I_h^1 (\mathscr{S}^{\star} g)\|_{\mathbf{A},\Omega} \\ &\leq \mathscr{C}_{\mathcal{T},\mathbf{i}} \lim_{\substack{g \in L^2(\Omega) \\ \|g\|_{\mu,\Omega} = 1}} \|\nabla^2 (\mathscr{S}^{\star} g)\|_{\Omega}. \end{split}$$

Idea two: estimation of the Hessian norm

P. Grisvard, 1985.

T. Chaumont-Frelet, S. Nicaise and J. Tomezyk, Comm. Pure Appl. Anal., 2020.

Because Ω is convex and $\gamma = 1$, we have

$$\|\nabla^2(\mathscr{S}^*\mathbf{g})\|_{\Omega} \leq \|\Delta(\mathscr{S}^*\mathbf{g})\|_{\Omega}.$$

Then, we use the facts that

$$-\Delta(\mathscr{S}^{\star}g) = 2\mu\omega^{2}g + \mu\omega^{2}\mathscr{S}^{\star}g$$

and

$$\omega \| \mathscr{S}^{\star} \mathbf{g} \|_{\mu,\Omega} \leq 2 \mathscr{C}_{\mathrm{st}} \| \mathbf{g} \|_{\mu,\Omega},$$

to show that

$$\|\mathbf{\nabla}^2(\mathscr{S}^{\star}\mathbf{g})\|_{\Omega} \leq 2\frac{\omega}{c_{\min}}\left(1+\mathscr{C}_{\mathrm{st}}\right)\|\mathbf{g}\|_{\mu,\Omega}.$$

Explicit control of the approximation factor

Recall that

$$\mathscr{C}_{\mathrm{ap}} \leq \mathscr{C}_{\mathcal{T},\mathrm{i}} \underset{\substack{g \in l^2(\Omega) \\ \|g\|_{\mu,\Omega} = 1}}{\mathsf{max}} \| oldsymbol{
abla}^2 (\mathscr{S}^{\star} g) \|_{\Omega}$$

and

$$\|\boldsymbol{\nabla}^2(\mathscr{S}^{\star}\boldsymbol{g})\|_{\Omega} \leq 2\frac{\omega}{c_{\min}}\left(1+\mathscr{C}_{\operatorname{st}}\right)\|\boldsymbol{g}\|_{\mu,\Omega} \quad \forall \boldsymbol{g} \in L^2(\Omega).$$

Guaranteed bound

$$\mathscr{C}_{\mathrm{ap}} \leq 2 \left(1 + \mathscr{C}_{\mathcal{T},\mathrm{i}}\right) rac{\omega h}{c_{\mathsf{min}}} \mathscr{C}_{\mathrm{st}}$$

Controlling the pre-factors

Takeaways

Takeaways

The estimator η needs to be "pre-factored" by $\mathscr{C}_{\mathrm{st}}$ or $\mathscr{C}_{\mathrm{ap}}.$ The "qualitative" behaviors of both quantities are relatively well known.

The behaviour of \mathscr{C}_{st} is only dictated by the PDE. Explicit bounds are available for non-trapping star-shaped obstables.

The approximation factor $\mathscr{C}_{\mathrm{ap}}$ depends on the PDE and V_h . When $\mathbf{A}=\mathbf{I}$, Ω is convex and $\mathscr{C}_{\mathrm{st}}$ is known, we can bound it nicely.

Numerical illustrations

Numerical illustrations

A validation experiment

Propagation of a plane wave

We consider the propagation of a plane wave in $\Omega=(-1,1)^2$

$$\begin{cases} -\omega^2 \mathbf{u} - \Delta \mathbf{u} &= 0 & \text{in } \Omega, \\ \nabla \mathbf{u} \cdot \mathbf{n} - i \omega \mathbf{u} &= \mathbf{g} & \text{on } \Gamma_{A}, \end{cases}$$

where

$$\mathbf{g} := \mathbf{\nabla} \xi_{\theta} \cdot \mathbf{n} - i \boldsymbol{\omega} \xi_{\theta} \quad \xi_{\theta} := e^{i \boldsymbol{\omega} \mathbf{d} \cdot \mathbf{x}}$$

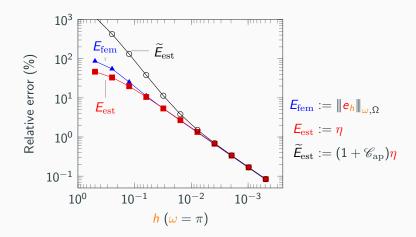
with $\mathbf{d} := (\cos \theta, \sin \theta)$ and $\theta = \pi/12$. The solution is $\mathbf{u} = \xi_{\theta}$.

$$h=\sqrt{2}\times 2/3$$

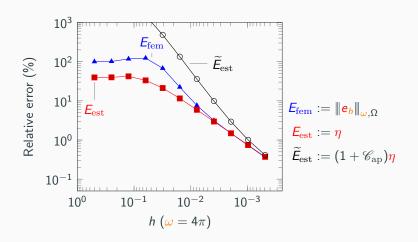
$$h=\sqrt{2}\times 1/2$$

$$h=\sqrt{2}\times 2/5$$

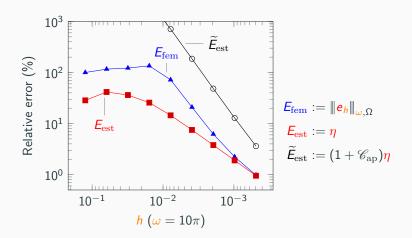
Plane wave experiment p=1 and $\omega=\pi$



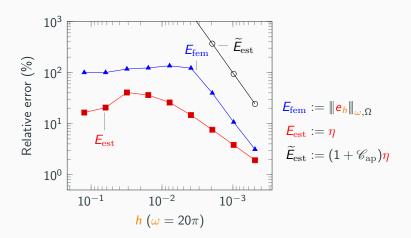
Plane wave experiment p=1 and $\omega=4\pi$



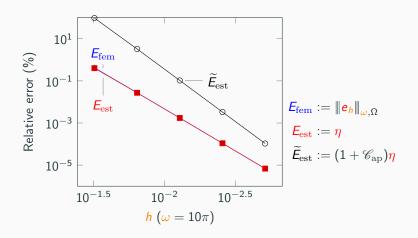
Plane wave experiment p=1 and $\omega=10\pi$



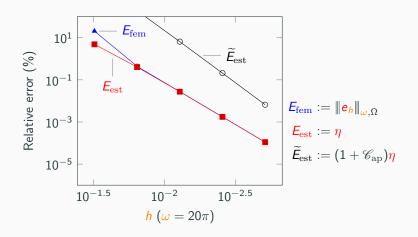
Plane wave experiment p = 1 and $\omega = 20\pi$



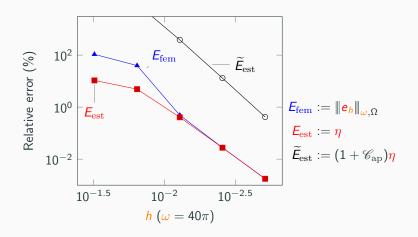
Plane wave experiment p = 4 and $\omega = 10\pi$



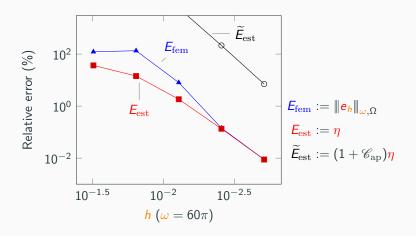
Plane wave experiment p = 4 and $\omega = 20\pi$



Plane wave experiment p = 4 and $\omega = 40\pi$



Plane wave experiment p = 4 and $\omega = 60\pi$



Numerical illustrations

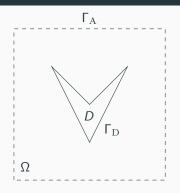
A more realistic example

Scattering by an non-trapping obstacle

We now consider a scattering problem

$$\left\{ \begin{array}{rcl} -\omega^2 \textbf{\textit{u}} - \Delta \textbf{\textit{u}} &=& 0 & \text{ in } \Omega, \\ \textbf{\textit{u}} &=& 0 & \text{ on } \Gamma_D, \\ \boldsymbol{\nabla} \textbf{\textit{u}} \cdot \textbf{\textit{n}} - i \omega \textbf{\textit{u}} &=& \textbf{\textit{g}} & \text{ on } \Gamma_A, \end{array} \right.$$

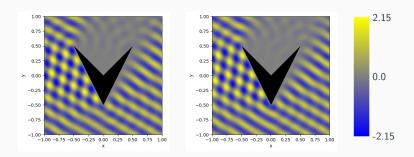
where again $\mathbf{g} = \mathbf{\nabla} \xi_{\theta} \cdot \mathbf{n} - i \omega \xi_{\theta}$.



We fix the wavenumber $\omega=10\pi$ and employ \mathbb{P}_3 elements.

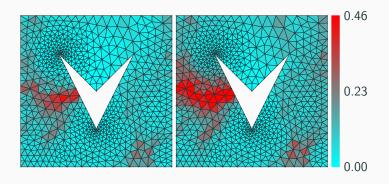
We consider a sequence of meshes that are adaptively refined using η_K .

Solution of the scattering problem



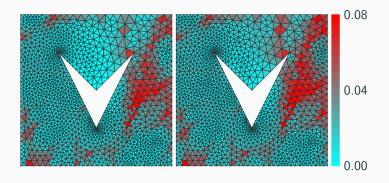
Real (left) and imaginary (right) parts of the solution

Estimated error in mesh #1



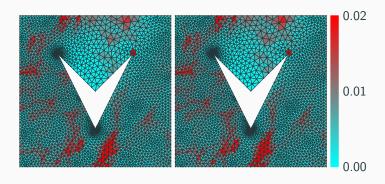
Estimator η_K (left) and elementwise error $\|\mathbf{e}_h\|_{\omega,K}$ (right)

Estimated error in mesh #2



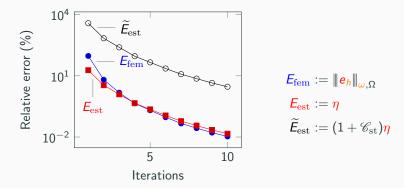
Estimator η_K (left) and elementwise error $\|\mathbf{e}_h\|_{\omega,K}$ (right)

Estimated error in mesh #3



Estimator η_K (left) and elementwise error $\|\mathbf{e}_h\|_{\omega,K}$ (right)

Behavior of the estimator through the adaptive procedure



Behaviors of the estimated and analytical errors in the adaptive procedure

Concluding remarks

Concluding remarks

Takeaways

Takeaways

We construct an a posteriori error estimator η via flux equilibration. It directly provides guaranteed error estimates at low frequencies.

For high frequencies, η has to be pre-factored, either by $\mathscr{C}_{\rm st}$ and $\mathscr{C}_{\rm ap}$. The estimates are asymptotically constant-free. In specific situations, we can provide guaranteed bounds on $\mathscr{C}_{\rm st}$ and $\mathscr{C}_{\rm ap}$.

There is still a long way toward fully reliable error estimation for high-frequency problems!

T. Chaumont-Frelet, A. Ern and M. Vohralik, Numer. Math., 2021.

Concluding remarks

Extensions

Extensions

We can obtain guaranteed bounds on $\mathscr{C}_{\mathrm{st}}$ in weakly trapping geometry with "directional" Morawetz mutliplier

$$(\mathbf{x}_d \mathbf{e}^d) \cdot \nabla \mathbf{u}$$
.

- S.N. Chandler-Wilde et. al., SIAM J. Math. Anal., 2020.
- T. Chaumont-Frelet and E.A. Spence, submitted.
- T. Chaumont-Frelet and Z. Kassali, in progress.

It is possible to obtain approximations for $\mathscr{C}_{\mathrm{ap}}$ in more general situations.

Extensions

Everything I presented (painfully) extends to Maxwell's equations:

T. Chaumont-Frelet, A. Ern and M. Vohralik, C.R. Math. Acad. Sci., 2020.

T. Chaumont-Frelet, A. Ern and M. Vohralik, Math. Comp., 2021.

T. Chaumont-Frelet and M. Vohralik, submitted.

T. Chaumont-Frelet, will be submitted soon!

Thanks for your attention! :-)