A study of linear dispersive models for nanoplasmonics.

Claire Scheid
LJAD, Nice & INRIA Sophia Antipolis, France.

Work in collaboration with Atlantis INRIA Project Team
S. Lanteri, N. Schmitt, J. Viquerat...
Institut Pascal, Clermont Ferrand
A. Moreau
Université de Valenciennes
S. Nicaise.

Workshop Numerical Waves, Nice
Outline

1 Motivations

2 Modelling equations: one approach

3 Theoretical study

4 Numerical framework
 • Academic context
 • Is the model with $\beta \neq 0$ physically relevant?

5 Validity of the model
Motivations

Control of the interaction of light with nano-scaled structures.

Nanophotonics
Motivations

Control of the interaction of light with metallic nano-scaled structures.

Nanoplasmonics
Control of the interaction of light with metallic nano-scaled structures.\hfill \Rightarrow Nanoplasmonics

Light + subwavelength metallic structures
\downarrow
Collective oscillations of the electrons of the metal.
\downarrow
Plasmons
Motivations

Surface plasmons

Bulk plasmons

Gap plasmons
Optical frequencies: $\approx [300\text{nm}, 700\text{nm}]$.

Size of the nano-structuration $< \lambda$.

Subwavelength phenomena.
Motivations

Interaction of electromagnetic waves with complex heterogeneous media.

Metals at the nanoscales at optical frequencies:

\[\rightarrow \text{Computational nanophotonics.} \]
Motivations

Interaction of electromagnetic waves with complex heterogeneous media.

Metals at the nanoscales at optical frequencies:

⇝ Computational nanophotonics.

Challenges in this context

- Geometrical characteristics of the physical domain.
- Physical characteristics of the propagation medium.
- Need of numerical accuracy
Outline

1 Motivations

2 Modelling equations: one approach

3 Theoretical study

4 Numerical framework
 - Academic context
 - Is the model with $\beta \neq 0$ physically relevant?

5 Validity of the model
Modelling equations

Free electrons of the metal \leadsto electron gas.

Hydrodynamic description (v: speed, n: density.)

$$m \left(\frac{\partial}{\partial t} + v \cdot \nabla \right) v = -e(E + v \times B) - m\gamma v - \frac{m\beta^2}{n} \nabla n$$

$$\frac{\partial}{\partial t} n + \text{div} (n v) = 0$$

$$J = -en v$$

+ Time Domain Maxwell’s equations (J, E and B).
Modelling equations

Free electrons of the metal \rightsquigarrow electron gas.

Hydrodynamic description (v: speed, n: density.)

\[
m \left(\frac{\partial}{\partial t} + v \cdot \nabla \right) v = -e (E + v \times B) - m\gamma v - \frac{m\beta^2}{n} \nabla n
\]

\[
\frac{\partial}{\partial t} n + \text{div} (n v) = 0
\]

\[
J = -en v
\]

+ Time Domain Maxwell’s equations (J, E and B).

\[
\frac{m\beta^2}{n} \nabla n \rightsquigarrow \text{quantum pressure term.}
\]
Linearized Hydrodynamic model

Formal linearization around an equilibrium state \((n_0, v_0, E_0, B_0, J_0) = (n_0, 0, E_0, 0)\),

\[
\begin{aligned}
\varepsilon_0 \varepsilon_r \frac{\partial \mathbf{E}}{\partial t} &= \text{curl} \mathbf{H} - \mathbf{J} \\
-\mu_0 \frac{\partial \mathbf{H}}{\partial t} &= \text{curl} \mathbf{E} \\
\frac{\partial \mathbf{J}}{\partial t} &= \beta^2 \nabla Q - \gamma \mathbf{J} + \varepsilon_0 \omega_p^2 \mathbf{E} \\
\frac{\partial Q}{\partial t} &= \nabla \cdot \mathbf{J},
\end{aligned}
\]

Maxwell’s equations

\[
\begin{aligned}
\beta \neq 0 & \implies \text{PDE for polarization current} \\
\beta = 0 & \implies \text{ODE for polarization current}
\end{aligned}
\]

Charge preservation

\[
\text{div}(\varepsilon_0 \varepsilon_r \mathbf{E}) = -Q
\]
Modeling equations: one approach

\[
\begin{align*}
\varepsilon_0 \varepsilon_r \frac{\partial E}{\partial t} &= \text{curl } H - J \\
\frac{\partial H}{\partial t} &= \text{curl } E \\
-\mu_0 \frac{\partial J}{\partial t} &= \beta^2 \nabla Q - \gamma J + \varepsilon_0 \omega_p^2 E \\
\frac{\partial Q}{\partial t} &= \nabla \cdot J,
\end{align*}
\]

~~~

**Key remark.**

The energy

\[
\mathcal{E}(t) = \frac{1}{2} \varepsilon_0 \varepsilon_r \| E \|^2 + \mu \| H \|^2 + \frac{1}{\varepsilon_0 \omega_p^2} \| J \|^2 + \frac{\beta^2}{\varepsilon_0 \omega_p^2} \| Q \|^2
\]

is decreasing (if adequate BCs)

\[
\frac{d}{dt} \mathcal{E}(t) = -\frac{\gamma}{\varepsilon_0 \omega_p^2} \| J \|^2 \leq 0.
\]

**Well-posedness** with semi-group theory is at reach!
Outline

1 Motivations

2 Modelling equations: one approach

3 Theoretical study

4 Numerical framework
   - Academic context
   - Is the model with $\beta \neq 0$ physically relevant?

5 Validity of the model
Theoretical study

Synthetic formulation

\((\mathcal{L}, D(\mathcal{L})) \) unbounded operator, \( U = (E, H, J, Q)^T \).

\[
\begin{aligned}
\begin{cases}
\partial_t U = \mathcal{L} U, \\
U(0) = U_0,
\end{cases}
\end{aligned}
\]

\( \mathcal{L} = \mathcal{A} + \mathcal{K} + \mathcal{F} \)

- \( \mathcal{A} \) unbounded operator,
- \( \mathcal{K} \) bounded operator,
- \( \mathcal{F} \) bounded operator.

\[
\mathcal{A} U = \begin{pmatrix}
\varepsilon_0^{-1} \varepsilon_L^{-1} \text{curl} H \\
-\mu_0^{-1} \text{curl} E \\
\beta^2 \nabla Q \\
\nabla \cdot J
\end{pmatrix}
\]

\[
\mathcal{K} U = \begin{pmatrix}
-\varepsilon_0^{-1} \varepsilon_L^{-1} J \\
0 \\
\varepsilon_0 \omega_p^2 E \\
0
\end{pmatrix}
\]

\[
\mathcal{F} U = \begin{pmatrix}
0 \\
0 \\
-\gamma J \\
0
\end{pmatrix}
\]
Theoretical study

First study for perfect medium (joint work with S. Nicaise).

- \( \Omega \) Lipschitz open bounded simply connected domain \( \subset \mathbb{R}^3 \).
- Boundary conditions \( B_{\text{perfect}}(U) = 0 \): \( E \times n = 0, \; Q = 0 \) on \( \partial \Omega \)

\[
\mathcal{H} = \{ U \in H(\text{div}, \Omega) \times H_0(\text{div} = 0, \Omega) \times L^2(\Omega)^3 \times L^2(\Omega), \text{div}(\varepsilon \varepsilon_1) = -\mathcal{U}_4 \text{ on } \Omega \},
\]

\[
\langle U, U' \rangle_{\mathcal{H}} := \varepsilon_0 \varepsilon L \langle U_1, U'_1 \rangle + \mu \langle U_2, U'_2 \rangle + \frac{1}{\varepsilon_0 \omega_p^2} \langle U_3, U'_3 \rangle + \frac{\beta^2}{\varepsilon_0 \omega_p^2} \langle U_4, U'_4 \rangle
\]

- Hilbert space: \( (\mathcal{H}, \langle \cdot, \cdot \rangle_{\mathcal{H}}) \)
- Energy scalar product: \( \langle \cdot, \cdot \rangle_{\mathcal{H}} \)
- Domain \( D(\mathcal{L}) \) dictated by \( A \) and \( B_{\text{perfect}} \):

\[
\text{"} \{ U \in \mathcal{H}, \; AU \in L^2, \; B_{\text{perfect}}(U) = 0 \} \text{"}.
\]

Properties of the operators.

- \( A \) is skew-adjoint, \( \Re \langle AU, U \rangle_{\mathcal{H}} = 0 \),
- \( \Re \langle KU, U \rangle_{\mathcal{H}} = 0 \),
- \( \langle FU, U \rangle_{\mathcal{H}} = -\frac{\gamma}{\varepsilon_0 \omega_p^2} \| J \|^2 \leq 0 \).
Well-posedness (joint work with S. Nicaise\textsuperscript{1})

\[ \mathcal{E}(t) = \frac{1}{2} \langle U, U \rangle_\mathcal{H} \]

Energy principle

\[ \frac{d\mathcal{E}}{dt} = -\frac{\gamma}{\varepsilon_0 \omega_p^2} \| J \|^2 \]

Dissipative operator

\[ \mathcal{R}(\langle \mathcal{L} U, U \rangle_\mathcal{H}) = \langle \mathcal{F} U, U \rangle_\mathcal{H} \leq 0 \]

\[ + \mathcal{L} \text{ is maximal.} \]

Theorem

The operator \( \mathcal{L} \) with domain \( D(\mathcal{L}) \) generates a \( C_0 \)-semigroup of contractions on \( \mathcal{H} \).

\textsuperscript{1}S. Nicaise, C. Scheid, CAMWA, 2020
What about the decay of the energy? (joint work with S. Nicaise)

Polynomial decay of the energy

Theorem

There exists a positive constant $C$ such that for all $U_0 \in D(A)$, $\forall t > 0$,

$$\mathcal{E}(t) \leq C t^{-1} \|U_0\|^2.$$

Sketch of the proof

- Imaginary axis in the resolvent set,

$$i\mathbb{R} \subset \rho(\mathcal{L})$$

- "Control at high frequencies"

$$\limsup_{|\xi| \to \infty} \frac{1}{\xi^2} \|(i\xi - \mathcal{L})^{-1}\| < \infty.$$
What about the decay of the energy (joint work with S. Nicaise)

Optimality of the decay

- Expansion of some eigenvalues at high frequencies.

Theorem

There exists $k_0$ large enough such that $\mathcal{L}$ has eigenvalues $\lambda_k^\pm$, for all $k \geq k_0$ satisfying

$$
\lambda_k^\pm = \pm i \left( (\varepsilon_0 \varepsilon_r \mu)^{-1/2} \lambda_{M,k} + \sqrt{\frac{\mu \varepsilon_0}{\varepsilon_r} \frac{\omega_p^2}{2 \lambda_{M,k}}} \right) - \frac{\gamma \varepsilon_0 \omega_p^2 \mu}{2 \lambda_{M,k}^2} + o \left( \frac{1}{\lambda_{M,k}^2} \right), \forall k \geq k_0.
$$

where $(\lambda_{M,k}^2)_k$ eigenvalues of curl(curl(.)) operator with PEC BC.

- For all $\varepsilon > 0$, construct an initial data that decay more slowly than $\frac{1}{t^{1+\varepsilon}}$.

Corollary

The decay rate is optimal.
Generalization to other BCs (joint work with S. Nicaise)?

\( \Omega \) exterior of \( O \) a bounded domain of \( \mathbb{R}^3 \) (\( \partial O = \Gamma_S \)), truncated by an artificial boundary \( \Gamma_A \).

Boundary conditions

- On \( \Gamma_S \), \( \mathcal{B}_{\text{perfect}}(U) = 0 \).
- On \( \Gamma_A \), \( \mathcal{B}_{\text{abs}}(U) = 0 \):

\[
E \times n - z(H \times n) \times n = 0 \text{ on } \Gamma_A, \quad \text{and}
\]

\[
\beta_1 J \cdot n + \beta_2 Q = 0 \text{ on } \Gamma_A,
\]

with \( (\beta_1, \beta_2) \in \mathbb{R}^+ \times \mathbb{R}^+ \) such that \( \beta_1 + \beta_2 > 0 \) and \( z = \sqrt{\frac{\mu}{\epsilon}} \).
Properties of the operators.

- $\mathcal{A}$ is not skew-adjoint, $\Re \langle AU, U \rangle_{\mathcal{H}} \leq 0$ because of $B_{abs}$,
- $\Re \langle KU, U \rangle_{\mathcal{H}} = 0$,
- $\langle FU, U \rangle_{\mathcal{H}} = -\frac{\gamma}{\varepsilon_0 \omega_p^2} \| J \|^2 \leq 0$.

Strategy: Prove that $\mathcal{A}$ is densely defined and closed and that $\mathcal{A}$ and $\mathcal{A}^*$ are dissipative.

Characterization of the adjoint

One has $D(\mathcal{A}^*) = \{ U \in \mathcal{H} \mid OU \in D(\mathcal{A}) \}$, and

$$\mathcal{A}^* = \mathcal{O} \mathcal{A} \mathcal{O},$$

with $\mathcal{O}(F, G, R, S)^\top = (F, -G, -R, S)^\top$.

$\Rightarrow$ The problem is well posed!
Decay rate of the energy? (joint work with S. Nicaise, 2021)

Polynomial decay of the energy

Theorem

There exists a positive constant $C$ such that for all $U_0 \in D(A)$, $\forall t > 0$,

- If $\beta_2 > 0$,
  \[ \mathcal{E}(t) \leq C t^{-1} ||U_0||^2. \]

- If $\beta_2 = 0$
  \[ \mathcal{E}(t) \leq C t^{-\frac{1}{3}} ||U_0||^2. \]
Outline

1. Motivations
2. Modelling equations: one approach
3. Theoretical study
4. Numerical framework
   - Academic context
   - Is the model with $\beta \neq 0$ physically relevant?
5. Validity of the model
Outline

1 Motivations

2 Modelling equations: one approach

3 Theoretical study

4 Numerical framework
   - Academic context
     - Is the model with $\beta \neq 0$ physically relevant?

5 Validity of the model
Numerical framework: semi-discretization

Discontinuous Galerkin discretization framework in space.

- Nodal DG, piecewise polynomials on each cells of the mesh: $\mathcal{V}_h \subset L^2$ $V_h \not\subset D(\mathcal{L})$.

Semi-discrete formulation

*Find $U_h \in C^1(0,T,\mathcal{V}_h)$ such that for all $U'_h \in \mathcal{V}_h$,*

$$\langle \frac{\partial U_h}{\partial t}, U'_h \rangle = \langle \mathcal{L}_h(U_h), U'_h \rangle_h,$$

$$\langle \mathcal{L}_h(U_h), U'_h \rangle_h = (U_h, A_h^* U'_h)_h + \langle \tilde{B}_h(U^*_h), U'_h \rangle_\partial + \langle (\mathcal{K} + \mathcal{F})(U_h), U'_h \rangle$$

- Use of centered fluxes or upwind fluxes. Hidden in $\tilde{B}_h$
Semi-discrete formulation

Find $U_h \in C^1(0,T,\mathcal{V}_h)$ such that for all $U'_h \in \mathcal{V}_h$,

$$
\langle \frac{\partial U_h}{\partial t}, U'_h \rangle = \langle \mathcal{L}_h(U_h), U'_h \rangle_h,
$$

$$
\langle \mathcal{L}_h(U_h), U'_h \rangle_h = (U_h, A^*_h U'_h)_h + \langle \tilde{B}_h(U^*_h), U'_h \rangle_\partial + \langle (\mathcal{K} + \mathcal{F})(U_h), U'_h \rangle
$$

Properties of the semi-discrete energy: $\mathcal{E}_h = \frac{1}{2} \langle U_h, U_h \rangle_H$

\begin{itemize}
  \item $\frac{d\mathcal{E}_h}{dt} = \langle \mathcal{F} U_h, U_h \rangle_H$ for centered fluxes $\rightsquigarrow$ Preserved energy principle.
  \item $\frac{d\mathcal{E}_h}{dt} = \langle \mathcal{F} U_h, U_h \rangle_H - \frac{\gamma}{\varepsilon_0 \varepsilon_r} \| U_h \|_{\text{faces}}^2 - \frac{\gamma}{\varepsilon_0 \varepsilon_r} \| U_h \|^2$ for upwind fluxes $\rightsquigarrow$ Numerical dissipation.
\end{itemize}

Stability and a priori convergence analysis are at reach!
$\rightsquigarrow$ standard numerical analysis.
Fully discrete schemes

Time integration with explicit schemes:

- Leap frog scheme of order 2 (LF2),
- Runge Kutta (RK2/RK4).

～～～

(LF2 & centered fluxes) or (RK2/RK4 & upwind fluxes)

～～～

Standard numerical analysis

- Theoretical proofs of stability (under CFL), convergence estimates via discrete energy principles and numerical validation in 2D and 3D
- CFL impacted by physical coefficients: especially $\omega_p$.

Discrete preservation of properties

<table>
<thead>
<tr>
<th></th>
<th>LF2 &amp; centered fluxes</th>
<th>RK2/RK4 &amp; upwind fluxes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraint (weakly)</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Energy principle</td>
<td>yes</td>
<td>no (num. dissipation)</td>
</tr>
<tr>
<td>Numerical decay</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>

Outline

1 Motivations

2 Modelling equations: one approach

3 Theoretical study

4 Numerical framework
   - Academic context
   - Is the model with $\beta \neq 0$ physically relevant?

5 Validity of the model
Is the model with $\beta \neq 0$ physically relevant?

$\beta = 0$ is usually sufficient!

Mandatory improvements.
- Full 3D parallel
- PML’s
- TF/SF
- Curvilinear elements
- p-local approximations
- Hybrid meshes
- Quantities of interest
- Oblique incidence
- ...

Claire Scheid (LJAD & INRIA)
Outline

1 Motivations

2 Modelling equations: one approach

3 Theoretical study

4 Numerical framework
   - Academic context
   - Is the model with $\beta \neq 0$ physically relevant?

5 Validity of the model
Validity of the model (PhD of N. Schmitt).

In lots of situations $\beta = 0$ is usually sufficient!

Is the model with $\beta \neq 0$ physically relevant?

Goal: Find structures for which the model impacts the position of measured resonances.

joint work with N. Schmitt (Inria), A. Moreau, A Pitelet, E. Centeno (Clermont-Ferrand), D. Loukrezis, H. De Gersem (T.U. Darmstadt), C. Ciraci (ITT, Italia).

4Pitelet et al, JOSA B, 2019
Validity of the model

Grating study

Key observation

Increase of the permittivity of the dielectric

\[ \downarrow \]

Increase of sensitivity of surface plasmons to quantum and internal pressure, i.e. to $\beta$

$\beta$

Claire Scheid (LJAD & INRIA)

A study of linear dispersive models for nanoplasmatics

07/10/2021 29/32
Overall goal

- Track surface plasmons resonances positions: dip in the reflectance spectra,
- Investigate whether they are captured by the model with $\beta \neq 0$ or $\beta = 0$.

Procedure

- Calibration step: find ”good” dimensions for the structure
- Investigate resonances positions with the two models.
- Generate a noisy reflectance spectra
- Estimate whether differences are significative with respect to variation of geometrical parameters.
Validity of the model

Grating

Taking into account for geometric uncertainties \(^5\)
Impact on the reflectance spectrum.

Blue \(\rightarrow \beta = 0\), Orange \(\rightarrow \beta \neq 0\).

Perspectives

Towards users ⟷ More physical test cases

Some methodological improvements
Design of new Finite Elements methods, include strategies of optimization...

Improvement of models