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Motivations

Motivations

Control of the interaction of light with nano-scaled structures.
 Nanophotonics

∼∼∼∼∼∼
Light + subwavelength metallic structures

↓
Collective oscillations of the electrons of the metal.

↓
Plasmons
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Motivations

Surface plasmons

Bulk plasmons

Gap plasmons
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Motivations

Optical frequencies: ≈ [300nm, 700nm].

λ
1km 0.3m 10−3m 7.8.10−7m3.8.10−7m 6.10−10m

Frequency

1 Hz

radio waves

109 Hz

micro-waves

3.1011 Hz

IR

4.1014 Hz

Visible

8.1014 Hz

UV

3.1017 Hz

 Size of the nano-structuration < λ.

∼∼∼

Subwavelength
phenomena.
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Motivations

Motivations

Interaction of electromagnetic waves with complex heterogeneous media.

Metals at the nanoscales at optical frequencies:
 Computational nanophotonics.

Challenges in this context

Geometrical characteristics of the physical domain.

Physical characteristics of the propagation medium.

Need of numerical accuracy
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Modelling equations: one approach

Modelling equations

Free electrons of the metal  electron gas.

Hydrodynamic description ( v: speed, n: density. )

m

(
∂

∂t
+ v · ∇

)
v = −e (E + v ×B)−mγv − mβ2

n
∇n

∂

∂t
n+ div (nv) = 0

J = −env

+ Time Domain Maxwell’s equations (J, E and B).

mβ2

n
∇n  quantum pressure term.
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Modelling equations: one approach

Linearized Hydrodynamic model

Formal linearization around an equilibrium state (n0, v0,E0,B0, J0) = (n0, 0,E0, 0),

ε0εr
∂E

∂t
= curlH− J

−µ0
∂H

∂t
= curlE

∂J

∂t
= β2∇Q− γJ + ε0ω

2
pE

∂Q

∂t
= ∇ · J,

Maxwell’s equations

+

β 6= 0  PDE for polarization current
β = 0  ODE for polarization current

Charge preservation

div(ε0εrE) = −Q
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Modelling equations: one approach

ε0εr
∂E

∂t
= curlH− J

−µ0
∂H

∂t
= curlE

∂J

∂t
= β2∇Q− γJ + ε0ω

2
pE

∂Q

∂t
= ∇ · J,
∼∼∼∼

Key remark.

The energy

E(t) =
1

2
ε0εr‖E‖2 + µ‖H‖2 +

1

ε0ω2
p

‖J‖2 +
β2

ε0ω2
p

‖Q‖2

is decreasing (if adequate BCs)

d

dt
E(t) = − γ

ε0ω2
p

‖J‖2 ≤ 0.

Well-posedness with semi-group theory is at reach!
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Theoretical study

Synthetic formulation

(L, D(L)) unbounded operator, U = (E,H, J,Q)
T
.

{
∂tU = LU,

U(0) = U0,

L = A+K + F

A unbounded operator,

K bounded operator,

F bounded operator.

AU =


ε−1

0 ε−1
L curlH

−µ−1
0 curlE

β2∇Q
∇ · J



KU =


−ε−1

0 ε−1
L J

0
ε0ω

2
pE

0



FU =


0
0
−γJ
0
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Theoretical study

First study for perfect medium (joint work with S. Nicaise).

Ω Lipschitz open bounded simply connected domain ⊂ IR3.

Boundary conditions Bperfect(U) = 0: E × n = 0, Q = 0 on ∂Ω

H = {U ∈ H(div,Ω)×H0(div = 0,Ω)× L2
(Ω)

3 × L2
(Ω), div(εU1) = −U4 on Ω},

〈U,U ′〉H := ε0εL〈U1,U ′
1〉+ µ〈U2,U ′

2〉+
1

ε0ω2
p

〈U3,U ′
3〉+

β2

ε0ω2
p

〈U4,U ′
4〉

Hilbert space: (H, 〈·, ·〉H)

Energy scalar product: 〈·, ·〉H
Domain D(L) dictated by A and Bperfect :

”
{
U ∈ H, AU ∈ L2, Bperfect(U) = 0

}
”.

Properties of the operators.

A is skew-adjoint, <〈AU,U〉H = 0,

<〈KU,U〉H = 0,

〈FU,U〉H = − γ
ε0ω2

p
‖J‖2 ≤ 0.
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Theoretical study

Well-posedness (joint work with S. Nicaise1 )

E(t) =
1

2
〈U,U〉H

Energy principle

dE
dt

= − γ

ε0ω2
p

‖J‖2
Dissipative operator

R(〈LU,U〉H) = 〈FU,U〉H ≤ 0

+ L is maximal.

Theorem

The operator L with domain D(L) generates a C0-semigroup of contractions on
H.

1S. Nicaise, C.Scheid, CAMWA, 2020
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Theoretical study

What about the decay of the energy? (joint work with S. Nicaise)

Polynomial decay of the energy

Theorem

There exists a positive constant C such that for all U0 ∈ D(A), ∀t > 0,

E(t) ≤ C t−1||U0||2.

Sketch of the proof

Imaginary axis in the resolvent set,

iIR ⊂ ρ(L)

”Control at high frequencies”

lim sup
|ξ|→∞

1

ξ2
‖(iξ − L)−1‖ <∞.
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Theoretical study

What about the decay of the energy (joint work with S. Nicaise)

Optimality of the decay

Expansion of some eigenvalues at high frequencies.

Theorem

There exists k0 large enough such that L has eigenvalues λ±
k , for all k ≥ k0 satisfying

λ±
k = ±i

(
(ε0εrµ)

−1/2λM,k +

√
µε0
εr

ω2
p

2λM,k

)
−
γε0ω

2
pµ

2λ2
M,k

+ o

(
1

λ2
M,k

)
, ∀k ≥ k0.

where (λ2
M,k)k eigenvalues of curl(curl(.)) operator with PEC BC.

For all ε > 0, construct an initial data that decay more slowly than 1
t1+ε .

Corollary

The decay rate is optimal.
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Theoretical study

Generalization to other BCs (joint work with S. Nicaise
2)?

Ω exterior of O a bounded domain of IR3 (∂O = ΓS), truncated by an artificial
boundary ΓA.
Boundary conditions

On ΓS , Bperfect(U) = 0.

On ΓA, Babs(U) = 0:

E × n− z(H × n)× n = 0 on ΓA, and (1)

β1J · n + β2Q = 0 on ΓA, (2)

with (β1, β2) ∈ IR+ × IR+ such that β1 + β2 > 0 and z =
√

µ
ε

2S. Nicaise, C. Scheid, preprint, 2021
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Theoretical study

Properties of the operators.

A is not skew-adjoint, <〈AU,U〉H ≤ 0 because of Babs,
<〈KU,U〉H = 0,

〈FU,U〉H = − γ
ε0ω2

p
‖J‖2 ≤ 0.

Strategy: Prove that A is densely defined and closed and that A and A∗ are
dissipative.

Characterization of the adjoint

One has D(A∗) = {U ∈ H |OU ∈ D(A)}, and

A∗ = OAO,

with O(F,G,R, S)> = (F,−G,−R,S)>.

 The problem is well posed!
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Theoretical study

Decay rate of the energy? (joint work with S. Nicaise, 2021)

Polynomial decay of the energy

Theorem

There exists a positive constant C such that for all U0 ∈ D(A), ∀t > 0,

If β2 > 0,
E(t) ≤ C t−1||U0||2.

If β2 = 0
E(t) ≤ C t− 1

3 ||U0||2.
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Numerical framework Academic context

Numerical framework: semi-discretization

Discontinuous Galerkin discretization framework in space.

Nodal DG, piecewise polynomials on each cells of the mesh : Vh ⊂ L2

Vh * D(L).

Semi-discrete formulation

Find Uh ∈ C1(0, T,Vh) such that for all U
′
h ∈ Vh,

〈∂Uh
∂t

, U ′h〉 = 〈Lh(Uh), U ′h〉h,

〈Lh(Uh), U ′h〉h = (Uh,A∗hU ′h)h + 〈B̃h(U∗h), U ′h〉∂ + 〈(K + F)(Uh), U ′h〉

Use of centered fluxes or upwind fluxes. Hidden in B̃h
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Numerical framework Academic context

Semi-discrete formulation

Find Uh ∈ C1(0, T,Vh) such that for all U
′
h ∈ Vh,

〈∂Uh
∂t

, U ′h〉 = 〈Lh(Uh), U ′h〉h,

〈Lh(Uh), U ′h〉h = (Uh,A∗hU ′h)h + 〈B̃h(U∗h), U ′h〉∂ + 〈(K + F)(Uh), U ′h〉

Properties of the semi-discrete energy: Eh = 1
2 〈Uh, Uh〉H

dEh
dt = 〈FUh, Uh〉H for centered fluxes  Preserved energy principle.
dEh
dt = 〈FUh, Uh〉H︸ ︷︷ ︸

− γ
ε0εr
‖Uh‖2

−‖JUhK‖2faces for upwind fluxes  Numerical dissipation.

Stability and a priori convergence analysis are at reach!
 standard numerical analysis.
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Numerical framework Academic context

Fully discrete schemes

Time integration with explicit schemes:
Leap frog scheme of order 2 (LF2),

Runge Kutta (RK2/RK4).

∼∼∼

(LF2 & centered fluxes) or (RK2/RK4 & upwind fluxes)

∼∼∼
Academic studies. 3

Standard numerical analysis
Theoretical proofs of stability (under CFL), convergence estimates via discrete energy
principles and numerical validation in 2D and 3D

CFL impacted by physical coefficients: especially ωp.

Discrete preservation of properties

LF2 & centered fluxes RK2/RK4 & upwind fluxes
Constraint (weakly) yes yes

Energy principle yes no (num. dissipation)
Numerical decay yes no

3Schmitt, C. S., Lanteri, Viquerat, Moreau, JCP(2016), Lanteri, C. SS., Viquerat, SISC (2017), Schmitt,

S., Viquerat, Lanteri, JCP (2018), S. Nicaise, C. S., CAMWA(2020)
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Numerical framework Is the model with β 6= 0 physically relevant?

Is the model with β 6= 0 physically relevant?

Mandatory improvements.

Full 3D parallel

PML’s

TF/SF

Curvilinear elements

p-local approximations

Hybrid meshes

Quantities of interest

Oblique incidence

...

β = 0 is usually sufficient !
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Validity of the model
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Validity of the model

Validity of the model (PhD of N. Schmitt 4).

In lots of situations β = 0 is usually sufficient !

∼∼∼∼∼∼

Is the model with β 6= 0 physically relevant?

∼∼∼∼∼∼

Goal: Find structures for which the model impacts the position of measured
resonances.

joint work with N. Schmitt (Inria), A. Moreau, A Pitelet, E. Centeno (Clermont-Ferrand),

D. Loukrezis, H. De Gersem (T.U. Darmstadt), C.Ciraci (ITT, Italia).

4Pitelet et al, JOSA B, 2019
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Validity of the model

Grating study

Key observation

Increase of the permittivity of the dielectric

⇓

Increase of sensitivity of surface plasmons to quantum and internal pressure
i.e. to β

metal, silver

hDieldielectric: TiO2

Vacuum
dGrating

z

x

hGrating
aGrating

Metallic grating

”not so small” structure (> 20 nm)
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Validity of the model

Overall goal

Track surface plasmons resonances positions: dip in the reflectance spectra,

Investigate whether they are captured by the model with β 6= 0 or β = 0.

Procedure

Calibration step: find ”good” dimensions for the structure

Investigate resonances positions with the two models.

Generate a noisy reflectance spectra

Estimate whether differences are significative with respect to variation of
geometrical parameters.
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Validity of the model

Grating

Taking into account for geometric uncertainties 5

Impact on the reflectance spectrum.

730 750
0

0.2

0.4

0.6

0.8

1

λ / nmBlue β = 0, Orange β 6= 0.

5Influence of spatial dispersion on surface plasmons and grating couplers, A. Pitelet et. al.,
JOSA B, 2019.
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Validity of the model

Perspectives

Towards users  More physical test cases

Some methodological improvements
Design of new Finite Elements methods, include strategies of optimization...

Improvement of models
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