

# A study of linear dispersive models for nanoplasmonics.

Claire Scheid

LJAD, Nice & INRIA Sophia Antipolis, France.

Work in collaboration with ATLANTIS INRIA PROJECT TEAM

S. Lanteri, N. Schmitt, J. Viquerat...

Institut Pascal, Clermont Ferrand

A. Moreau

Université de Valenciennes

S. Nicaise.

### Workshop Numerical Waves, Nice

Claire Scheid (LJAD & INRIA)

A study of linear dispersive models for nanoplasmonics

07/10/2021 1/32

### Outline

### Motivations

- Modelling equations: one approach
- Theoretical study

#### Numerical framework

- Academic context
- Is the model with  $\beta \neq 0$  physically relevant?

#### Validity of the model

2/32

Control of the interaction of light with nano-scaled structures.  $\rightsquigarrow$  Nanophotonics

イロン イロン イヨン イヨン

Control of the interaction of light with metallic nano-scaled structures.  $\rightsquigarrow$  Nanoplasmonics

イロン イロン イヨン イヨン

Control of the interaction of light with metallic nano-scaled structures.  $\rightsquigarrow$  Nanoplasmonics



07/10/2021 3/32



#### **Surface** plasmons

### **Bulk** plasmons



### **Gap** plasmons



イロン イロン イヨン イヨン

### Optical frequencies: $\approx [300nm, 700nm]$ .





 $\rightsquigarrow$  Size of the nano-structuration  $< \lambda$ .

 $\sim \sim \sim$ 



Subwavelength phenomena.



Claire Scheid (LJAD & INRIA)

A study of linear dispersive models for nanoplasmonics

07/10/2021 5/32

Interaction of electromagnetic waves with complex heterogeneous media.

Metals at the nanoscales at optical frequencies:  $\rightsquigarrow$  Computational nanophotonics.

#### Interaction of electromagnetic waves with complex heterogeneous media.

Metals at the nanoscales at optical frequencies: ~> Computational nanophotonics.

#### Challenges in this context

- Geometrical characteristics of the physical domain.
- Physical characteristics of the propagation medium.
- Need of numerical accuracy

< ロ > < 同 > < 回 > < 回 >

## Outline

### Motivations



### Theoretical study

#### Numerical framework

- Academic context
- Is the model with  $\beta \neq 0$  physically relevant?

#### Validity of the model

# Modelling equations

Free electrons of the metal  $\rightsquigarrow$  electron gas.

Hydrodynamic description (  $\mathbf{v}$ : speed, n: density. )

$$m\left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla\right) \mathbf{v} = -e\left(\mathbf{E} + \mathbf{v} \times \mathbf{B}\right) - m\gamma \mathbf{v} - \frac{m\beta^2}{n} \nabla n$$
$$\frac{\partial}{\partial t} n + \operatorname{div}\left(n\mathbf{v}\right) = 0$$
$$\mathbf{J} = -en\mathbf{v}$$

+ Time Domain Maxwell's equations (J, E and B).

Claire Scheid (LJAD & INRIA) A study of linear dispersive models for nanoplasmonics

# Modelling equations

Free electrons of the metal  $\rightsquigarrow$  electron gas.

Hydrodynamic description (  $\mathbf{v}$ : speed, n: density. )

$$m\left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla\right) \mathbf{v} = -e\left(\mathbf{E} + \mathbf{v} \times \mathbf{B}\right) - m\gamma \mathbf{v} - \frac{m\beta^2}{n} \nabla n$$
$$\frac{\partial}{\partial t} n + \operatorname{div}\left(n\mathbf{v}\right) = 0$$
$$\mathbf{J} = -en\mathbf{v}$$

+ Time Domain Maxwell's equations (J, E and B).

$$\frac{m\beta^2}{n} \nabla n \rightsquigarrow \text{quantum pressure term}$$

# Linearized Hydrodynamic model

Formal linearization around an equilibrium state  $(n_0, v_0, \mathbf{E}_0, \mathbf{B}_0, J_0) = (n_0, 0, \mathbf{E}_0, 0)$ ,

$$\begin{cases} \varepsilon_0 \varepsilon_r \frac{\partial \mathbf{E}}{\partial t} = \operatorname{curl} \mathbf{H} - \mathbf{J} & \text{Maxwell's equations} \\ -\mu_0 \frac{\partial \mathbf{H}}{\partial t} = \operatorname{curl} \mathbf{E} & + \\ \frac{\partial \mathbf{J}}{\partial t} = \beta^2 \nabla Q - \gamma \mathbf{J} + \varepsilon_0 \omega_p^2 \mathbf{E} & \beta \neq 0 \rightsquigarrow \text{PDE for polarization current} \\ \frac{\partial Q}{\partial t} = \nabla \cdot \mathbf{J}, & \beta \neq 0 \rightsquigarrow \text{ODE for polarization current} \end{cases}$$

Charge preservation

 $\operatorname{div}(\varepsilon_0\varepsilon_r\mathbf{E}) = -Q$ 

Modelling equations: one approach

$$\begin{cases} \varepsilon_0 \varepsilon_r \frac{\partial \mathbf{E}}{\partial t} = \operatorname{curl} \mathbf{H} - \mathbf{J} \\ -\mu_0 \frac{\partial \mathbf{H}}{\partial t} = \operatorname{curl} \mathbf{E} \\ \frac{\partial \mathbf{J}}{\partial t} = \beta^2 \nabla Q - \gamma \mathbf{J} + \varepsilon_0 \omega_p^2 \mathbf{E} \\ \frac{\partial Q}{\partial t} = \nabla \cdot \mathbf{J}, \end{cases}$$

 $\sim \sim \sim \sim$ 

#### Key remark.

The energy 
$$\mathcal{E}(t) = \frac{1}{2} \varepsilon_0 \varepsilon_r \|E\|^2 + \mu \|H\|^2 + \frac{1}{\varepsilon_0 \omega_p^2} \|J\|^2 + \frac{\beta^2}{\varepsilon_0 \omega_p^2} \|Q\|^2$$

is decreasing (if adequate BCs)

$$\frac{d}{dt}\mathcal{E}(t) = -\frac{\gamma}{\varepsilon_0 \omega_p^2} \|J\|^2 \le 0.$$

# Well-posedness with semi-group theory is at reach!

Claire Scheid (LJAD & INRIA)

# Outline



2) Modelling equations: one approach

### Theoretical study

- Numerical framework
  - Academic context
  - Is the model with  $\beta \neq 0$  physically relevant?

#### Validity of the model

# Synthetic formulation

$$(\mathfrak{L}, D(\mathfrak{L}))$$
 unbounded operator,  $U = (E, H, J, Q)^T$ 

$$\begin{cases} \partial_t U = \mathfrak{L} U, \\ U(0) = U_0, \end{cases}$$

$$\mathfrak{L}=\mathcal{A}+\mathcal{K}+\mathcal{F}$$

- $\mathcal{A}$  unbounded operator,
- ${\cal K}$  bounded operator,
- $\mathcal{F}$  bounded operator.

$$\mathcal{A}U = \begin{pmatrix} \varepsilon_0^{-1} \varepsilon_L^{-1} \operatorname{curl} H \\ -\mu_0^{-1} \operatorname{curl} E \\ \beta^2 \nabla Q \\ \nabla \cdot J \end{pmatrix}$$
$$\mathcal{K}U = \begin{pmatrix} -\varepsilon_0^{-1} \varepsilon_L^{-1} J \\ 0 \\ \varepsilon_0 \omega_p^2 E \\ 0 \end{pmatrix}$$
$$\mathcal{F}U = \begin{pmatrix} 0 \\ 0 \\ -\gamma J \\ 0 \\ 0 \end{pmatrix}$$

Claire Scheid (LJAD & INRIA)

A study of linear dispersive models for nanoplasmonics

07/10/2021 12/32

#### Theoretical study

# First study for perfect medium (joint work with S. Nicaise).

- $\Omega$  Lipschitz open bounded simply connected domain  $\subset \mathbb{R}^3$ .
- Boundary conditions  $\mathcal{B}_{perfect}(U) = 0$ :  $E \times n = 0$ , Q = 0 on  $\partial \Omega$

 $\mathcal{H} = \{\mathcal{U} \in H(\operatorname{div}, \Omega) \times H_0(\operatorname{div} = 0, \Omega) \times L^2(\Omega)^3 \times L^2(\Omega), \operatorname{div}(\varepsilon \mathcal{U}_1) = -\mathcal{U}_4 \text{ on } \Omega\},$ 

$$\langle \mathcal{U}, \mathcal{U}' \rangle_{\mathcal{H}} := \varepsilon_0 \varepsilon_L \langle \mathcal{U}_1, \mathcal{U}'_1 \rangle + \mu \langle \mathcal{U}_2, \mathcal{U}'_2 \rangle + \frac{1}{\varepsilon_0 \omega_p^2} \langle \mathcal{U}_3, \mathcal{U}'_3 \rangle + \frac{\beta^2}{\varepsilon_0 \omega_p^2} \langle \mathcal{U}_4, \mathcal{U}'_4 \rangle$$

- Hilbert space:  $(\mathcal{H}, \langle \cdot, \cdot \rangle_{\mathcal{H}})$
- Energy scalar product:  $\langle \cdot, \cdot \rangle_{\mathcal{H}}$
- Domain  $D(\mathfrak{L})$  dictated by  $\mathcal{A}$  and  $\mathcal{B}_{perfect}$  :

" {
$$U \in \mathcal{H}, \mathcal{A}U \in L^2, \mathcal{B}_{perfect}(U) = 0$$
}".

#### Properties of the operators.

- $\mathcal{A}$  is skew-adjoint,  $\Re \langle \mathcal{A}U, U \rangle_{\mathcal{H}} = 0$ ,
- $\Re \langle \mathcal{K}U, U \rangle_{\mathcal{H}} = 0$ ,

• 
$$\langle \mathcal{F}U, U \rangle_{\mathcal{H}} = -\frac{\gamma}{\varepsilon_0 \omega_p^2} \|J\|^2 \le 0.$$

#### Theoretical study

Well-posedness (joint work with S. Nicaise<sup>1</sup>)

$$\mathcal{E}(t) = \frac{1}{2} \langle U, U \rangle_{\mathcal{H}}$$

Energy principle

$$\frac{d\mathcal{E}}{dt} = -\frac{\gamma}{\varepsilon_0 \omega_n^2} \|J\|^2$$

Dissipative operator

$$\mathcal{R}(\langle \mathfrak{L}U, U \rangle_{\mathcal{H}}) = \langle \mathcal{F}U, U \rangle_{\mathcal{H}} \le 0$$

 $+ \mathfrak{L}$  is maximal.

#### Theorem

The operator  $\mathfrak{L}$  with domain  $D(\mathfrak{L})$  generates a  $C_0$ -semigroup of contractions on  $\mathcal{H}$ .

| <sup>1</sup> S. Nicaise, C.Scheid, CAM | WA, 2020                                            |     | (高)、高      | ୬୯୯     |
|----------------------------------------|-----------------------------------------------------|-----|------------|---------|
| Claire Scheid (LJAD & INRIA)           | A study of linear dispersive models for nanoplasmor | ics | 07/10/2021 | 14 / 32 |

# What about the decay of the energy? (joint work with S. Nicaise)

Polynomial decay of the energy

#### Theorem

There exists a positive constant C such that for all  $U_0 \in \mathcal{D}(\mathcal{A})$ ,  $\forall t > 0$ ,

 $\mathcal{E}(t) \le C t^{-1} ||U_0||^2.$ 

### Sketch of the proof

• Imaginary axis in the resolvent set,

 $i \mathbb{R} \subset \rho(\mathfrak{L})$ 

• "Control at high frequencies"

$$\limsup_{|\xi| \to \infty} \frac{1}{\xi^2} \| (i\xi - \mathfrak{L})^{-1} \| < \infty.$$

イロト イポト イヨト イヨト

# What about the decay of the energy (joint work with S. Nicaise)

### Optimality of the decay

• Expansion of some eigenvalues at high frequencies.

Theorem

There exists  $k_0$  large enough such that  $\mathfrak L$  has eigenvalues  $\lambda_k^\pm$ , for all  $k\geq k_0$  satisfying

$$\lambda_k^{\pm} = \pm i \left( (\varepsilon_0 \varepsilon_r \mu)^{-1/2} \lambda_{M,k} + \sqrt{\frac{\mu \varepsilon_0}{\varepsilon_r}} \frac{\omega_p^2}{2\lambda_{M,k}} \right) - \frac{\gamma \varepsilon_0 \omega_p^2 \mu}{2\lambda_{M,k}^2} + o\left(\frac{1}{\lambda_{M,k}^2}\right), \forall k \ge k_0.$$

where  $(\lambda_{M,k}^2)_k$  eigenvalues of curl(curl(.)) operator with PEC BC.

• For all  $\varepsilon > 0$ , construct an initial data that decay more slowly than  $\frac{1}{t^{1+\varepsilon}}$ .

### Corollary

The decay rate is optimal.

# Generalization to other BCs (joint work with S. Nicaise<sup>2</sup>)?

 $\Omega$  exterior of O a bounded domain of  $\mathbb{R}^3$  ( $\partial O = \Gamma_S$ ), truncated by an artificial boundary  $\Gamma_A$ . Boundary conditions

- On  $\Gamma_S$ ,  $\mathcal{B}_{perfect}(U) = 0$ .
- On  $\Gamma_A$ ,  $\mathcal{B}_{abs}(U) = 0$ :

 $E \times \mathbf{n} - z(H \times \mathbf{n}) \times \mathbf{n} = 0 \text{ on } \Gamma_A, \text{ and}$  $\beta_1 J \cdot \mathbf{n} + \beta_2 Q = 0 \text{ on } \Gamma_A,$ 

with  $(\beta_1,\beta_2)\in \mathbb{R}^+\times\mathbb{R}^+$  such that  $\beta_1+\beta_2>0$  and  $z=\sqrt{\frac{\mu}{\epsilon}}$ 

<sup>2</sup>S. Nicaise, C. Scheid, preprint, 2021

イロト 不得下 イヨト イヨト 二日

(1)

(2)

### Properties of the operators.

- $\mathcal{A}$  is not skew-adjoint,  $\Re \langle \mathcal{A}U, U \rangle_{\mathcal{H}} \leq 0$  because of  $\mathcal{B}_{abs}$ ,
- $\Re \langle \mathcal{K}U, U \rangle_{\mathcal{H}} = 0$ ,

• 
$$\langle \mathcal{F}U, U \rangle_{\mathcal{H}} = -\frac{\gamma}{\varepsilon_0 \omega_p^2} \|J\|^2 \le 0.$$

Strategy: Prove that  $\mathcal{A}$  is densely defined and closed and that  $\mathcal{A}$  and  $\mathcal{A}^*$  are dissipative.

### Characterization of the adjoint

One has  $D(\mathcal{A}^*) = \{ U \in \mathcal{H} \, | \, \mathcal{O}U \in D(\mathcal{A}) \}$ , and

$$\mathcal{A}^* = \mathcal{O}\mathcal{A}\mathcal{O},$$

with  $\mathcal{O}(F, G, R, S)^{\top} = (F, -G, -R, S)^{\top}$ .

#### ~ The problem is well posed!

07/10/2021 18/32

イロン イロン イヨン イヨン

# Decay rate of the energy? (joint work with S. Nicaise, 2021)

### Polynomial decay of the energy

#### Theorem

There exists a positive constant C such that for all  $U_0 \in \mathcal{D}(\mathcal{A})$ ,  $\forall t > 0$ ,

• If  $\beta_2 > 0$ , • If  $\beta_2 = 0$  $\mathcal{E}(t) \le C t^{-1} ||U_0||^2$ .

イロン イロン イヨン イヨン

# Outline

### Motivations

- 2) Modelling equations: one approach
- Theoretical study

### Numerical framework

- Academic context
- Is the model with  $\beta \neq 0$  physically relevant?

### Validity of the model

# Outline

1 Motivations

- 2 Modelling equations: one approach
- Theoretical study

### Numerical framework

- Academic context
- Is the model with  $\beta \neq 0$  physically relevant?

### Validity of the model

# Numerical framework: semi-discretization

Discontinuous Galerkin discretization framework in space.

• Nodal DG, piecewise polynomials on each cells of the mesh :  $\mathcal{V}_h \subset L^2$   $V_h \nsubseteq D(\mathfrak{L}).$ 

Semi-discrete formulation

Find  $U_h \in \mathcal{C}^1(0,T,\mathcal{V}_h)$  such that for all  $U_h^{'} \in \mathcal{V}_h$ ,

$$\langle \frac{\partial U_h}{\partial t}, U'_h \rangle = \langle \mathfrak{L}_h(U_h), U'_h \rangle_h,$$

 $\langle \mathfrak{L}_h(U_h), U_h' \rangle_h = (U_h, \mathcal{A}_h^* U_h')_h + \langle \tilde{\mathcal{B}}_h(U_h^*), U_h' \rangle_\partial + \langle (\mathcal{K} + \mathcal{F})(U_h), U_h' \rangle$ 

• Use of centered fluxes or upwind fluxes. Hidden in  $ilde{\mathcal{B}_h}$ 

イロト イポト イヨト イヨト

#### Academic context

### Semi-discrete formulation

Find  $U_h \in \mathcal{C}^1(0, T, \mathcal{V}_h)$  such that for all  $U'_h \in \mathcal{V}_h$ ,

$$\langle \frac{\partial U_h}{\partial t}, U'_h \rangle = \langle \mathfrak{L}_h(U_h), U'_h \rangle_h,$$

 $\langle \mathfrak{L}_h(U_h), U_h' \rangle_h = (U_h, \mathcal{A}_h^* U_h')_h + \langle \mathcal{B}_h(U_h^*), U_h' \rangle_\partial + \langle (\mathcal{K} + \mathcal{F})(U_h), U_h' \rangle$ 

Properties of the semi-discrete energy:  $\mathcal{E}_h = \frac{1}{2} \langle U_h, U_h \rangle_{\mathcal{H}}$ 

•  $\frac{d\mathcal{E}_h}{dt} = \langle \mathcal{F}U_h, U_h \rangle_{\mathcal{H}}$  for centered fluxes  $\rightsquigarrow$  Preserved energy principle. •  $\frac{d\mathcal{E}_h}{dt} = \langle \mathcal{F}U_h, U_h \rangle_{\mathcal{H}} - \| \llbracket U_h \rrbracket \|_{faces}^2$  for upwind fluxes  $\rightsquigarrow$  Numerical dissipation.  $-\frac{\gamma}{\varepsilon_0\varepsilon_m} \|U_h\|^2$ 

### Stability and *a priori* convergence analysis are at reach! → standard numerical analysis.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

# Fully discrete schemes

Time integration with explicit schemes:

- Leap frog scheme of order 2 (LF2),
- Runge Kutta (RK2/RK4).

 $\sim \sim \sim$ 

### (LF2 & centered fluxes) or (RK2/RK4 & upwind fluxes)

 $\sim \sim \sim$ 

## Academic studies. <sup>3</sup>

### Standard numerical analysis

- Theoretical proofs of stability (under CFL), convergence estimates via discrete energy principles and numerical validation in 2D and 3D
- CFL impacted by physical coefficients: especially  $\omega_p$ .

### Discrete preservation of properties

|                     | LF2 & centered fluxes | RK2/RK4 & upwind fluxes |
|---------------------|-----------------------|-------------------------|
| Constraint (weakly) | yes                   | yes                     |
| Energy principle    | yes                   | no (num. dissipation)   |
| Numerical decay     | yes                   | no                      |

# Outline

Motivations

- 2 Modelling equations: one approach
- Theoretical study

### Numerical framework

- Academic context
- Is the model with  $\beta \neq 0$  physically relevant?

### Validity of the model

# Is the model with $\beta \neq 0$ physically relevant?









A DG-based software suite for nano-optics

#### Mandatory improvements.

- Full 3D parallel
- PML's
- TF/SF
- Curvilinear elements
- p-local approximations
- Hybrid meshes
- Quantities of interest
- Oblique incidence

Θ..



### $\beta=0$ is usually sufficient $\mathop{!}_{{\scriptscriptstyle \square}\,{\scriptscriptstyle \, \triangleright}\,{\scriptscriptstyle \, \triangleleft}\,\,{\scriptscriptstyle \square}\,{\scriptscriptstyle \, \flat}\,{\scriptscriptstyle \, \triangleleft}\,\,{\scriptscriptstyle \, \square}\,{\scriptscriptstyle \, \flat}\,{\scriptscriptstyle \, \triangleleft}\,\,{\scriptscriptstyle \, \square}\,$

Claire Scheid (LJAD & INRIA)

A study of linear dispersive models for nanoplasmonics

07/10/2021 26/32

# Outline

### Motivations

- 2 Modelling equations: one approach
- Theoretical study

#### Numerical framework

- Academic context
- Is the model with  $\beta \neq 0$  physically relevant?

### 5 Validity of the model

# Validity of the model (PhD of N. Schmitt <sup>4</sup>).

In lots of situations  $\beta = 0$  is usually sufficient !

 $\sim \sim \sim \sim \sim \sim$ 

Is the model with  $\beta \neq 0$  physically relevant?

 $\sim \sim \sim \sim \sim \sim$ 

Goal: Find structures for which the model impacts the position of measured resonances.

joint work with N. Schmitt (Inria), A. Moreau, A Pitelet, E. Centeno (Clermont-Ferrand), D. Loukrezis, H. De Gersem (T.U. Darmstadt), C.Ciraci (ITT, Italia).

<sup>4</sup>Pitelet et al, JOSA B, 2019

イロト 不得 トイヨト イヨト

# Grating study

Key observation

Increase of the permittivity of the dielectric

∜

Increase of sensitivity of surface plasmons to quantum and internal pressure i.e. to  $\beta$ 



# Overall goal

- Track surface plasmons resonances positions: dip in the reflectance spectra,
- Investigate whether they are captured by the model with  $\beta \neq 0$  or  $\beta = 0$ .

### Procedure

- Calibration step: find "good" dimensions for the structure
- Investigate resonances positions with the two models.
- Generate a noisy reflectance spectra
- Estimate whether differences are significative with respect to variation of geometrical parameters.

イロト イポト イヨト イヨト

# Grating



Claire Scheid (LJAD & INRIA)

07/10/2021 31/32

### Perspectives

#### Towards users ~> More physical test cases

### Some methodological improvements

Design of new Finite Elements methods, include strategies of optimization...

Improvement of models