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Some fibered operators and their band functions

Fibered operators

Diagonalization of an operator:

Models with invariance properties are reduced to lower dimensional problems.
Translation invariance : partial Fourier transform :
→ Magnetic field, waveguides, stratified media.
Periodic invariance : Floquet-Bloch transform.
→ Cristallin structures, Graphene.

General framework: an operator H0 with invariance properties writes

UH0U
∗ =

∫ ⊕
h0(p)dp, with U a unitary transform.

Fiber operators h0(p) (may) have a discrete sectrum (En(p))n≥1.

Spectrum of H0:

The band functions are p 7→ En(p)n≥1. The spectrum of H0 is

σ(H0) = ∪
n≥1

RanEn.

Non constant band functions correspond to absolutely continuous spectrum.
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Some fibered operators and their band functions

Some questions (among others)

Transport properties

Consider the Schrödinger equation

i∂tψ = H0ψ.

Spectral analysis of H0 requiered for the time dependant analysis.

Gaps in the spectrum correspond to the absence of propagation in the
direction of invariance.

After perturbation, discrete eigenvalues correspond to trapped modes.

Resonances play a role in scattering theory.

Spectral analysis

Critical points of the band functions are thresolds in the spectrum of H0.
General theory in [GeNi98] for proper analytical band functions.

They correspond to instable energies of the system.
→ No standard limiting absorption principle.
→ More eigenvalues and resonances after perturbation.
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Some fibered operators and their band functions

Somes examples: The magnetic Laplacian

Constant magnetic field B = 1 in a half-plane R2
+ = {(s, t) ∈ R× R+}.

Classical trajectories:

B = 1

t

s

1
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Some fibered operators and their band functions

Somes examples: The magnetic Laplacian

The Schrödinger operator:

The magnetic potential A(s, t) = (−t, 0) generates a magnetic field

B = curl A = 1.

The magnetic Laplacian is (the closure of)

H0 = (−i∇− A)2 = −∂2
t + (−i∂s − t)2 in L2(R2

+)

with (let’s say) Neumann boundary conditions.

Reduction of dimension:

Here, U is the partial Fourier transform in s. The fiber operator is for p ∈ R:

h0(p) = −∂2
t + (t − p)2 in L2(R+).

The band functions are the values E for which there exists y 6= 0 solution of
{
−y ′′(t) + (t − p)2y(t) = Ey(t), t > 0,

y ′(0) = 0.
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Some fibered operators and their band functions

Somes examples: The magnetic Laplacian

Each band function En has a unique non-degenerate minimum ([Dg,DH93]).
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Figure: Abscissa: p (Fourier parameter dual to s).

σ(H0) = [minE1,+∞).

It also tends to a finite limit (Landau levels)!
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Some fibered operators and their band functions

More magnetic models: the snake’s orbits

B = a > 1B = 1

1

Figure: Classical orbits of an electron submitted to magnetic steps
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Some fibered operators and their band functions

More magnetic models: the snake’s orbits

B = 1B = −1
×

1

Figure: Classical orbits of an electron submitted to magnetic steps
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Some fibered operators and their band functions

More magnetic models: the snake’s orbits

Band functions for the symmetric magnetic step :
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Some fibered operators and their band functions

Somes examples: The Laplacian in a perturbed waveguide

To be continued
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The Laplacian in a deformed waveguide

Construction of the waveguide

Geometric data of the waveguide:

A reference curve γ : R→ R3, defined by a curvature κ and a torsion.

A cross section ω ⊂ R2, an open bounded lipschitz domain.

A rotation θ : R→ R of the section around γ.

To make it simpler, assume that the torsion of γ is 0.
The rotation θ will play a similar role...
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The Laplacian in a deformed waveguide

Tubular coordinate

Construction of a waveguide Ω ⊂ R3:

Let (e1, e2, e3) be a Frenet frame associated with γ.

Let eθ2 (s), eθ3 (s) be the frame obtained by applying a rotation of angle θ(s) to
(e2(s), e3(s)) around e1(s).

Define L : R× R2 → R3 by

L(s, t2, t3) = γ(s) + t2e
θ
2 (s) + t3e

θ
3 (s)

With additional hypotheses, L is a diffeomorphism on R× ω, and the waveguide
is defined by

Ω := L(R× ω).
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The Laplacian in a deformed waveguide

The reference unperturbed operator

The reference tube Ω0:

The curve γ(R) is a line (i.e. κ = 0).

The twisting θ′ is a constant β, with two different case:
β = 0: straight tube (a cylinder)
β 6= 0: periodically twisted tube.
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The Laplacian in a deformed waveguide

The reference unperturbed operator

Our reference operator:
The Laplacian −∆ in Ω0 with Dirichlet boundary conditions.
Denote ϕ the cylindrical variable and ∂ϕ = t2∂3 − t3∂2 the angular derivative.
After a change of variable the original Laplacian is unitarily equivalent to

H0 = −∂2
2 − ∂2

3 − (∂s − β∂ϕ)2 in L2(R× ω) with Dirichlet b.c.

Let Fs be the Partial Fourier transform in the s variable.

Fiber decomposition: FsH0F∗s =

∫ ⊕
p∈R

h0(p)dp.

h0(p) := −∆ω − (−ip − β∂ϕ)2 in L2(ω) with Dirichlet b.c.
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The Laplacian in a deformed waveguide

Band functions of the free operator

The operators (h0(p))p∈R form a type A analytic family of self-adjoint operators
with compact resolvent.
Denote by (En(p))n≥0 the increasing sequence of eigenvalues of h0(p). Then

σ(H0) = ∪n≥1En(R) = [E1,+∞) with En = min
p∈R

En(p).

Analysis of the first band function, done in [Briet-Kovarik-Raikov-Soccorsi 08]:

The first eigenvalue E1(p) is non-degenerate (simple).

E1 = E1(0) and this minimum is non-degenerate and unique.

The case β = 0 of a straight tube

In the cylinder R× ω, the variables decouple:

−∆Ω0 = Id⊗ (−∆ω) + (−∂2
s )⊗ Id

The band functions are explicit:

En(p) = En + p2

here (En)n≥1 are the eigenvalues of −∆ω (with Dirichlet b.c.).
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The Laplacian in a deformed waveguide

Perturbation of the waveguide

Let κ and τ be two real functions such that

lim
±∞

κ = lim
±∞

τ = 0.

Consider Ω = L(R× ω), the tube of cross section ω, along the curve γ and
twisted by θ with θ′ = β + τ .
Let H be the Dirichlet Laplacian in Ω. The metric is G := (dL)T (dL).

G =



h2 + h2

2 + h2
3 h2 h3

h2 1 0
h3 0 1


 with





h(s, t) = 1− κ(s)(t2 cos θ(s) + t3 sin θ(s))

h2(s, t) = t3θ
′(s)

h3(s, t) = −t2θ
′(s)

Remark that h =
√

det(G ), and note G−1 = G jk . The operator is

−∆Ω ≡
1

h

3∑

j,k=1

∂jhG
jk∂k on L2(R× ω, h) with Dirichlet b.c..
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The Laplacian in a deformed waveguide

Creation of eigenvalues

After a change of variables:

H ≡ −∂2
2 − ∂2

3 −
κ2

4h2
− (h−1/2(∂s − θ′∂ϕ)h−1/2)2 in L2(R×ω) with Dirichlet b.c.

Its essential spectrum is still [E1,+∞). What about discrete spectrum?

x
σ(H0)E1

xx

C
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The Laplacian in a deformed waveguide

Twisting vs bendig: references

(Some) Known results for β = 0

Pure bending (θ′ = 0 and κ 6= 0) creates discrete eigenvalues (Duclos-Exner
95, Grushin 04).

Pure twisting (κ = 0 and τ 6= 0) does not change the spectrum (Grushin 04).
Existence of a Hardy inequality (Ekholm-Kovarik-Krejcirik 08) proves that
adding a small bending (κ� 1) does not add discrete spectrum.

(Some) Known results for β > 0 and κ = 0.

Small enhanced twisting 0 < τ � 1 does not change the spectrum
([Briet-Hammadi-Krejkirik 15])

Slowed twisting (
∫
τ < 0) creates eigenvalues (eventually an infinite

number). Counting function studied in Briet-Kovarik-Raikov-Soccorsi 08].

Scattering properties in Briet-Kovarik-Raikov 15].
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The Laplacian in a deformed waveguide

Our perturbative approach

Some questions:
No result when β 6= 0 and κ 6= 0.
For straight tubes, switching from bending to twisting, eigenvalue(s)
diseappear in the essential spectrum. Are they resonances?
Provide quantitative criterion to compare twisting and bending, even when
β 6= 0.

Our approach:
Consider a waveguide along a curve with curvature δκ, with cross section ω
fixed, and twisted by a rotating function θ′ = β + δτ .
Study what happen near E1 as δ → 0

Recall that the reference operator is

H0 = −∂2
2 − ∂2

3 − (∂s − β∂ϕ)2.

The perturbed operator is

Hδ := −∂2
2 − ∂2

3 − δ2 κ
2

4h2
δ

− (h
−1/2
δ (∂s − (β+δτ)∂ϕ)h

−1/2
δ )2

with hδ(s, t) = 1− δκ(s)(t2 cos θδ(s) + t3 sin θδ(s)), θ′δ = β + δτ.
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Main results: asymptotics of the resonance.

Plan

1 Some fibered operators and their band functions

2 The Laplacian in a deformed waveguide

3 Main results: asymptotics of the resonance.

4 Proofs and generalizations

N.Popoff 22 / 38



Main results: asymptotics of the resonance.

Recall the meromorphic extension for the 1d Laplacian

z 7→ (−∆R − z)−1 is well defined on C \ [0,+∞).
Set z = k2, with k ∈ C+ = {im(k) > 0}. Then (−∆− k2)−1 has a kernel

∀k ∈ C+,

∫

R

e ip(s−s′)

p2 − k2
dp =

e ik|s−s
′|

2ik
.

Theorem

Let w(s) = exp(−a|s|) with a > 0. Then k 7→ (−∆R − k2)−1, acting on wL2(R),
initially defined on C+, admits a meromorphic extansion to {im(k) > −a}, with a
unique pole in 0.

x
σ(H0)0

z ∈ C \ [0,+∞)

−→
z=k2

0

k ∈ C+

Second sheet

x
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Main results: asymptotics of the resonance.

Resonances for perturbations

For suitable V , the resolvent (−∆R + V − k2)−1 is meromorphic on a
neighborhood of 0.
Its poles are the resonances of −∆R + V .
For small V , you expect a single resonance near 0.
When k ∈ C+ ∩ iR is a resonance, it corresponds to a negative eigevalue.

x
σ(H0)0

xx

z ∈ C \ [0,+∞)

−→
z=k2

0

k ∈ C+

Second sheet

x
x
x

Motivations for finding resonances
Expansion of the semi-group: near an isolated resonance k0 for H,

e−itH ≈ e−itz0 Π + R with

{
Π rank one projector

R remainder

Singularities of the spectral shift function and Breit-Wigner formulas.
Poles of the scattering matrix
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Main results: asymptotics of the resonance.

Resolvent of our free opetator

Lemma

The free resolvent C+ 3 k 7→ (H0 − E1 − k2)−1, acting on the weighted space
wL2(R× ω), admits a meromorphic extension near 0.

Proof: extend singular Cauchy integrals of the form
∫

R
e ip(s−s′)ψn(t, p)ψn(t ′, p)(En(p)− E1 − k2))−1dp,

Similar results near other non degenerate critical points of the band
functions, in particular near each µn when β = 0.
General method for analitically fibered operators, see [Gérard 90].

Hypotheses on the waveguide:

The functions κ and τ are C 2.
These functions, their first and second derivative satisfy

κ(s), τ(s) = O(e−αs
2

)

for some α > 0.
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Main results: asymptotics of the resonance.

Main result for periodically twisted waveguide

Theorem (B.M.P.P 2018)

Fix a sufficiently small neighborhood of zero D in C. Then, there exists δ0 > 0
such that for δ ≤ δ0, the function C+ 3 k 7→ (Hδ − E1 − k2)−1, acting on
wL2(R× ω), admits a meromorphic extension on D. This function has a unique
pole k(δ) in D. It has multiplicity one and satisfies

k(δ) = iµ1δ + O(δ2), µ1 ∈ R.

Moreover, there exists a function F : R→ R, constants cj > 0, such that

µ1 = −c1β

∫

R
τ(s)ds + c2β

2

∫

R
κ(s)F (s)ds.

The function F , c1 and c2 depend only on β and ω (explicit).
Further, the pole k(δ) is a purely imaginary number.
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Main results: asymptotics of the resonance.

Main result for periodically twisted waveguide

Theorem (B.M.P.P 2018)

Fix a sufficiently small neighborhood of zero D in C. Then, there exists δ0 > 0
such that for δ ≤ δ0, the function C+ 3 k 7→ (Hδ − E1 − k2)−1, acting on
wL2(R× ω), admits a meromorphic extension on D. This function has a unique
pole k(δ) in D. It has multiplicity one and satisfies

k(δ) = iµ1δ + O(δ2), µ1 ∈ R.

Moreover, there exists a function F : R→ R, constants cj > 0, such that

µ1 = −c1β

∫

R
τ(s)ds + c2β

2

∫

R
κ(s)F (s)ds.

The function F , c1 and c2 depend only on β and ω (explicit).
Further, the pole k(δ) is a purely imaginary number.

F (s) =

∫

ω

(
|∂ϕψ1(t)|2 +

1

4
|ψ1(t)|2

)
(t2 cos(βs) + t3 sin(βs))dt,
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Main results: asymptotics of the resonance.

Comments on the result

Recall that our resonance of Hδ − E1 satisfies

k(δ) = iµ1δ + O(δ2), µ1 ∈ R.

with

µ1 = −c1β

∫

R
τ(s)ds + c2β

2

∫

R
κ(s)F (s)ds.

Localization of the resonance:

When µ1 > 0,

E1 + k(δ)2 = E1 − δ2µ2
1 + O(δ3) is a discrete eigenvalue below E1.

When µ1 < 0, it gives an antiboundstate.

When µ1 = 0, you need to go to the next order (hard).

Influence of the geometry:

When κ = 0, it depends on the sign of
∫
R τ .

When
∫
R τ = 0, both cases can appear.

When β � 1, you can focus on the first term.

When β = 0, you need to go to the next order.
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Main results: asymptotics of the resonance.

Main result for perturbation of a straight waveguide

Theorem (B.M.P.P 2018)

Assume β = 0, the same results hold, but k(δ) satisfies

k(δ) = iµ2δ
2 + O(δ3), µ2 ∈ R.

Moreover, there exist positive bilinear form q1, q2, and a bilinear form q3 such that

µ2 = q1(κ, κ)− q2(τ, τ) + q3(τ, κ̇)

Similar result near each threshold En, depending on its multiplicity as an
eigenvalues of −∆ω.
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Main results: asymptotics of the resonance.

Main result for perturbation of a straight waveguide

Theorem (B.M.P.P 2018)

Assume β = 0, the same results hold, but k(δ) satisfies

k(δ) = iµ2δ
2 + O(δ3), µ2 ∈ R.

Moreover, there exist positive bilinear form q1, q2, and a bilinear form q3 such that

µ2 = q1(κ, κ)− q2(τ, τ) + q3(τ, κ̇)

µ2 =
1

8

∑

q≥2

(Eq − E1)2〈ψq|t2ψ1〉2〈κ|(−∂2
s + Eq − E1)−1κ〉

−1

2

∑

q≥2

(Eq − E1)〈ψq|∂ϕψ1〉2〈τ |(−∂2
s + Eq − E1)−1τ〉

+
1

2

∑

q≥2

(Eq − E1)〈ψq|∂ϕψ1〉〈ψq|t2ψ1〉〈τ |(−∂2
s + Eq − E1)−1κ̇〉.
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Proofs and generalizations

Birman Schwinger form and Grushin matrix:

Main ingredients:

Laurent expansion of the free resolvent:

R0(k) = (H0 − E1 − k2)−1 =
A−1

k
+ F (k) with F holomorphic near 0

Resolvent identity and Birman Schwinger principle led to invert

I + (I + δVδF (k))−1
δVδ

A−1

k
with Vδ a differential operator.

Feschbar-Grushin decomposition: in a suitable basis, this operator writes

I + (I + δVδF (k))−1
δVδ

A−1

k
=

(
I ?
0 a

)
with a = 1 +

η(k)

k
=

k + η(k)

k

Here η is an analytical function. The resonances are the k such that

k + η(k) = 0.

Conclude with Rouché theorem and asymptotic analysis as δ → 0.
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Proofs and generalizations

A general procedure for fibers operators

Consider an anlytically fibered operator

In 1d, any threshold given by a non degenerate unique critical point is a
meromorphic branching point of the resolvent.

R0(k) =
iGG∗

k
+ F (k).

General theory when the band functions are proper in ([Gérard-Nier 98]).

Add a small perturbation δV0

Existence of a unique resonance k(δ) near each of these thresholds in a
general framework ([Grigis-Klopp 95]).

We have shown the expected formula

k(δ) = iη1δ + iη2δ
2 + O(δ2) with η1 = GV0G

∗.

The next term η2 is given by η2 = −GV0F (0)V0G
∗.

For the Laplacian, F (0) is an explicit convolution operator.
In the general case, it can be expressed with Hadamard regularization of
Cauchy type integral.
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Proofs and generalizations

The Neumann magnetic Laplacian

My favorite Hamiltonian:
The magnetic Laplacian with unitary magnetic field and Neumann boundary
condition:

H0 = (−i∇− A)2 = −∂2
t + (−i∂s − t)2 in R2

+ := R× R+

Fibered by partial Fourier transform in s.
Each band function has a unique non degenerate minimum.
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Proofs and generalizations

Small deformation of the boundary

Parametrize the boundary by a function δχ with

δ � 1 and lim
±∞

χ = 0.

t = χ (s)

Ω =
{
(s, t) ∈ R2, t > χ (s)

}

n(t,s)

(t,s)•

t

s

When χ ≥ 0:
δ > 0 modelizes an obstacle and δ < 0 a bump.

Consider (−i∇−A)2 = −∂2
t + (−i∂s − t)2 in L2(Ω) with Neumann boundary

condition.
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Proofs and generalizations

Another geometric perturbation

The perturbed operator

After rectification of the boundary:

Hδ = −∂2
x + (−i∂y − x−iδχ′(y)∂x + δχ(y))2 in R2

+

New boundary condition :

∂xu =
1

(1 + δ2χ′(y)2)

(
δχ′(y)∂yu − iδ2χ′(y)χ(y)

)
at x = 0

Since Hδ and H0 have different domains, you cannot write V = Hδ − H0.

Approach with a difference of resolvent:

Consider the difference of resolvent

Wδ = H−1
δ − H−1

0 acting on L2(R2
+).

We found that Wδ = H−1
0 VδH

−1
δ where

Vδ = second order diferential operator + boundary operator.

Use more resolvent identities.
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Proofs and generalizations

Resonance or eigenvalue?

Recall that σ(H0) = [Θ0,+∞).

Theorem (B.G.P. 2020)

Fix a sufficiently small neighborhood of zero D in C. There exists δ0 > 0 such
that for δ ≤ δ0, the function C+ 3 k 7→ (Hδ −Θ0 − k2)−1, acting on wL2(R2

+),
admits a meromorphic extension on D. This function has a unique pole k(δ) in D.
It has multiplicity one and satisfies

k(δ) = iµ2δ
2 + O(δ3), µ2 ∈ R.

Geometrical comments:

Changing δ in −δ does not change the main asymptotics: a bump or a hole
creates the same effect.

The main term µ2 depends on ‖χ‖H1 and ‖χ̂‖L2 (upcoming result).
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Proofs and generalizations

Birman Schwinger form and Grushin matrix:

Define Hδ − H0 = δVδ. It is a second order differential operator.
Write R0(k) = (H0 − E1 − k2)−1 = A−1

k + F (k) with F holomorphic.
Formal resolvent identity for R(k) = (Hδ − E1 − k2)−1 in weighted space:

R(k) = R0(k) (I + δVδF (k))−1

(
I + (I + δVδF (k))−1

δVδ
A−1

k

)−1

Therefore, R(k) is well defined iff I + (I + δVδF (k))−1
δVδ

A−1

k is invertible.
Here, A−1 is rank 1. In a basis adapted to ker(A−1)

⊕
Im(A−1), we have:

I + (I + δVδF (k))−1
δVδ

A−1

k
=

(
I ?
0 a

)
with a = 1 +

η(k)

k
=

k + η(k)

k

Consequence: the resonances are the k such that

k + η(k) = 0.

Write A−1 = iG∗G with G a linear form, so that

η(k) = iδG (I + δVδF (k))−1 VG∗
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