
A non-linear variational characterization for
Dirac eigenvalues in bounded domains.

Application to a spectral geometric inequalities.

Thomas OURMIÈRES-BONAFOS
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Setting of the problem

Geometrical setting : Ω ⊂ R2 such that
• Ω is C∞, bounded, simply connected;
• ν = (ν1, ν2) is the outward pointing normal vector field (we set

n = ν1 + iν2).
(Euclidean) Dirac operator : Operator which acts in L2(Ω,C2) and acts
as

DΩ := −iσ1∂1 − iσ2∂2 =

(
0 −2i∂z

−2i∂z̄ 0

)
,

where the Pauli matrices σ1, σ2, σ3 are

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

We set

dom(DΩ) := {u = (u1,u2)> ∈ H1(Ω,C2) : u2 = inu1 on ∂Ω}.

The spectral problem: find (E ,u) ∈ R× dom(DΩ) such that

DΩu = Eu.
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From where does this operator comes from ?

• Introduced by Dirac in 1928 to have a quantum theory taking into
account the spin & special relativity.

• With this boundary condition it appears as a shape optimization
problem introduced by particle physicists to model the
confinement in hadrons:

inf
Ω
{E1(Ω) + b|Ω|}, b > 0

where E1(Ω) > 0 is the first non-negative eigenvalue of DΩ.

P. N. BOGOLIUBOV

ANN. INST. HENRI POINCARÉ (1968)

A. CHODOS, R. L. JAFFE, K. JOHNSON, C. B.THORN
PHYS. REVIEW D (1974)

• Renewal of interest : 2D operator is an effective operator to
describe the behavior of electrons in graphene nanostructure.
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About the boundary condition

The boundary condition is obtained as the limit when m→ +∞ of the
operator posed in L2(R2,C2):

” − iσ1∂1 − iσ2∂2 + m1Ωcσ3 −→
m→+∞

DΩ ”

J. M. BARBAROUX, H. CORNEAN, L. LE TREUST, E. STOCKMAYER

ANNALES HENRI POINCARÉ (2019)

N. ARRIZABALAGA, L. LE TREUST, A. MAS, N. RAYMOND

JOURNAL DE L’ÉCOLE POLYTECHNIQUE (2019)

A. MOROIANU, T. O.-B., K. PANKRASHKIN
COMMUNICATIONS IN MATHEMATICAL PHYSICS (2020)

Remark : For −∆Ω (the Dirichlet Laplacian posed in a domain Ω) can
be seen as the limit as R → +∞

” −∆ + R1Ωc −→
R→+∞

−∆Ω ”
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Statement of the problem

Proposition(
DΩ,dom(DΩ)

)
is self-adjoint, its spectrum is discrete and verifies

· · · ≤ −E2(Ω) ≤ −E1(Ω) < 0 < E1(Ω) ≤ E2(Ω) ≤ · · ·

R. D. BENGURIA, S. FOURNAIS, E. STOCKMEYER, H. VAN DEN BOSCH

ANNALES HENRI POINCARÉ. (2017)
.
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Statement of the problem

Proposition(
DΩ,dom(DΩ)

)
is self-adjoint, its spectrum is discrete and verifies

· · · ≤ −E2(Ω) ≤ −E1(Ω) < 0 < E1(Ω) ≤ E2(Ω) ≤ · · ·

R. D. BENGURIA, S. FOURNAIS, E. STOCKMEYER, H. VAN DEN BOSCH

ANNALES HENRI POINCARÉ. (2017)
They were interested in proving a Faber-Krahn inequality for E1(Ω).

Theorem (in dimension two)

Let Ω ⊂ R2 be a Lipschitz bounded domain and let λDir
1 (Ω) be its first

Dirichlet eigenvalue. There holds
π

|Ω|
λDir

1 (D) ≤ λDir
1 (Ω)

with equality if and only if Ω is a disk.

G. FABER

MÜNCH. BER. (1923)

E. KRAHN
MATH. ANN. (1925)
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Statement of the problem

Proposition(
DΩ,dom(DΩ)

)
is self-adjoint, its spectrum is discrete and verifies

· · · ≤ −E2(Ω) ≤ −E1(Ω) < 0 < E1(Ω) ≤ E2(Ω) ≤ · · ·

R. D. BENGURIA, S. FOURNAIS, E. STOCKMEYER, H. VAN DEN BOSCH

ANNALES HENRI POINCARÉ. (2017)
They were interested in proving a Faber-Krahn inequality for E1(Ω).

Faber-Krahn conjecture for Dirac

There holds √
π

|Ω|
E1(D) ≤ E1(Ω)

with equality if and only if Ω is a disk.

But in
R. D. BENGURIA, S. FOURNAIS, E. STOCKMEYER, H. VAN DEN BOSCH
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY. (2017)

they prove....
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Proposition √
2π
|Ω|
≤ E1(Ω).

Some remarks :
• E1(D) ' 1.435 . . . thus E1(D) >

√
2.

• A mode corresponding to E1(D) is given by

u(x) :=

(
J0(E1(D)|x |)

i x1+ix2
|x| J1(E1(D)|x |)

)
• This bound was known from people working in spin geometry

S. RAULOT
JOURNAL OF GEOMETRY AND PHYSICS. (2006)

We proved a ”simpler” result :

Theorem [Antunes, Benguria, Lotoreichik, O.-B.]

E1(Ω) ≤ |∂Ω|
πr2

i + |Ω|
E1(D),

where ri is the inradius of Ω. There is equality in the previous inequality
if and only if Ω is a disk.
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A non-linear variational characterization of E1(Ω)

Goal : obtain a variational characterization of E1(Ω).

How ? We develop a min-max principle for our operator (which can be
seen as an operator with gap).

J. DOLBEAULT, M. J. ESTEBAN, E. SÉRÉ
J. FUNCT. ANAL. (2000)

M. GRIESEMER, H. SIEDENTOP
J. LONDON MATH. SOC.. (1999)

L. SCHIMMER, J. P. SOLOVEJ, S. TOKUS

ANN. HENRI POINCARÉ. (2019)

J. D. TALMAN
PHYS. REV. LETT. (1986)

To our knowledge : first time this idea is extended to Dirac operators
on bounded domain with local boundary conditions.

J.- M. BARBAROUX, L. LE TREUST, N. RAYMOND, E. STOCKMEYER
PREPRINT. (2020)



Introduction and Main results A non-linear variational characterization Geometric upper bounds About the Faber-Krahn conjecture

Heuristic

Let E > 0 and look for u = (u1,u2)> ∈ dom(DΩ) such that

DΩu = Eu ⇐⇒
{
−2i∂zu2 = Eu1
−2i∂z̄u1 = Eu2

in Ω.

It implies
− 4∂z∂z̄u1 = E2u1 in Ω. (1)

But if u2 = −i 2
E ∂z̄u1 up to the boundary ∂Ω:

n̄∂z̄u1 +
E
2

u1 = 0 on ∂Ω. (2)

Multiply (1) by ū1, integrate by parts (taking into account the b.c. (2)) :

4‖∂z̄u1‖2
Ω − E2‖u1‖2

Ω + E
∫
∂Ω

|u1|2ds = 0.
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Beyond the heurisic

Define for E > 0 the quadratic form{
qΩ

E,0(u) := 4‖∂z̄u‖2
Ω − E2‖u‖2

Ω + E
∫
∂Ω
|u|2ds

dom(qΩ
E,0) = C∞(Ω)

Proposition

qΩ
E,0 is closable and its closure is denoted qΩ

E . Moreover

dom(qΩ
E ) = H1(Ω) +H2(Ω).

Here :
• H1(Ω) is the usual first-order Sobolev space,
• H2(Ω) is the Hardy space (holomorphic functions in Ω with traces

L2(∂Ω)).
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The variational principle
Let E > 0:
• qΩ

E is a densely defined, semi-bounded and closed quadratic form
thus associated with a s.a. operator HΩ

E .
• HΩ

E has compact resolvent and its first eigenvalue µΩ(E) is
characterized by

µΩ(E) = inf
u∈dom(qΩ

E )\{0}

qΩ
E (u)

‖u‖2
Ω

Proposition

µΩ(E) = 0 if and only if E = E1(Ω).

Elements of proof :

• Study E 7→ µΩ(E) : continuous, concave, µΩ(0) = 0 (holomorphic
functions, loss of compactness), there exists E] > 0 such that for
all E ∈ (0,E]) there holdsµΩ(E) > 0.

• Let E? > 0 such that µΩ(E?) = 0 then for all E ∈ (0,E?) there
holds µΩ(E) > 0 and for all E ∈ (E?,+∞) there holds µΩ(E) < 0.
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The variational principle
Let E > 0:
• qΩ

E is a densely defined, semi-bounded and closed quadratic form
thus associated with a s.a. operator HΩ

E .
• HΩ

E has compact resolvent and its first eigenvalue µΩ(E) is
characterized by

µΩ(E) = inf
u∈dom(qΩ

E )\{0}

qΩ
E (u)

‖u‖2
Ω

Proposition

µΩ(E) = 0 if and only if E = E1(Ω).

Elements of proof :

• If E ∈ Sp(DΩ) then µΩ(E) ≤ 0.
• If µΩ(E) = 0 then E ∈ Sp(DΩ) (use the regularity of functions in

dom(HΩ
E )).
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Three domains

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Figure: Three domains of same area of the unit disk denoted Ω1,Ω2,Ω3.
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Behavior of µΩ
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Figure:

Behavior of µΩj with respect to E . The black dot is the first non-negative root
J0(λ) = J1(λ) (λ = E1(D) ' 1.43469565 . . . ).
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Upper bounds : philosophy & first result

Thanks to the variational principle, it is easy to obtain upper-bounds :
pick the ”good” test function such that

qΩ
E (u)

‖u‖2
Ω

≤ 0

and then µΩ(E) ≤ 0 and E > E1(Ω).

Proposition (a simple upper bound)

There holds
E1(Ω) ≤ |∂Ω|

|Ω|
.

Proof : Pick u ≡ 1 in Ω, there holds

qΩ
E (u)

‖u‖2
Ω

= E
( |∂Ω|
|Ω|
− E

)
then chose E =

|∂Ω|
|Ω|

.
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We want to obtain the following upper-bound :

Theorem
There holds

E1(Ω) ≤ |∂Ω|
πr2

i + |Ω|
E1(D),

with equality if and only if Ω is a disk.

This is a consequence of the following theorem

Theorem
There holds

E1(Ω) ≤
|∂Ω|+

√
|∂Ω|2 + 8πE1(D)(E1(D)− 1)(πr2

i + |Ω|)

2(πr2
i + |Ω|)

,

with equality if and only if Ω is a disk.

Proof : πr2
i ≤ |Ω|, 4π|Ω| ≤ |∂Ω|2 and :

|∂Ω|2 + 8πE1(D)(E1(D)− 1)(πr2
i + |Ω|) ≤ |∂Ω|2(1 + 4E1(D)(E1(D)− 1))

= |∂Ω|2(2E1(D)− 1)2.
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Proof of the upper-bound 1/2

Follow the strategy of Szegö for the first non-trivial e.v. of the Neumann
Laplacian :

λNeu
1 (Ω) ≤ π

|Ω|
λNeu

1 (D).

G. SZEGÖ
J. RATION. MECH. ANAL. (1954)

Main idea :
• Without loss of generality : 0 ∈ Ω and ri = minx∈∂Ω ‖x‖R2 .
• f : D→ Ω conformal map, f (0) = 0 and f (z) =

∑+∞
n=1 cnzn.

• Consider the minimizer u0(x) := J0(E1(D)|x |) for µD(E1(D)) = 0.
• Use u := u0 ◦ f−1 ∈ dom(qΩ

E ) as a test function.
• Remark that a change of variable gives for all E > 0:

µΩ(E) ≤
qΩ

E (u)

‖u‖2
Ω

= −E2 +
4‖∂z̄u0‖2

D + EJ0(E1(D))2
∫ 2π

0 |f
′(eiθ)|dθ∫

D |u0(x)|2|f ′(x1 + ix2)|2dx1dx2

•
∫ 2π

0 |f
′(eiθ)|dθ = |∂Ω|.
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Proof of the upper bound 2/2

• u0 is radial so in polar coordinates (using Fourier series) :∫
D
|u0(x)|2|f ′(x1 + ix2)|2dx1dx2 = 2π

+∞∑
n=1

n|cn|2Mn.

• Properties of Bessel functions and E1(D) give:

Mn :=

∫ 1

0
J0(E1(D)r)2r2n−1dr ≥ n

2n − 1
M1 =

n
2n − 1

J0(E1(D))2.

• Hence

2π
+∞∑
n=1

n|cn|2Mn ≥ J0(E1(D))2(2π|c1|2 + 2π
+∞∑
n=2

n2

2n − 1
|cn|2

)
≥ J0(E1(D))2(πr2

i + |Ω|
)

• We get

µΩ(E) ≤ P(E)

πr2
i + |Ω|

,

with P(E) = −E2(πr2
i + |Ω|) + E |∂Ω|+ 2πE1(D)(E1(D)− 1)

• Find the roots of P(E) = 0.
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Some numerics

Figure: Modulus of an eigenfunction associated with the first Dirac eigenvalue
for Ω1,Ω2,Ω3.
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Some numerics

Figure: Argument of an eigenfunction associated with the first Dirac eigenvalue
for Ω1,Ω2,Ω3.
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Back to fhe Faber-Krahn Conjecture

Figure: Plot of the principal eigenvalue for 2500 domains randomly generated
satisfying |Ω| = π, as function of the perimeter.
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Back to fhe Faber-Krahn Conjecture
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Behavior of µΩj with respect to E . The black dot is the first
non-negative root of J0(λ) = J1(λ) (λ = E1(D) ' 1.43469565 . . . ).
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New conjecture

Faber-Krahn for HΩ
E

For all E > 0 there holds

π

|Ω|
µD(

√
|Ω|
π

E) ≤ µΩ(E),

with equality if and only if Ω is a disk.

Actually, this ”new” conjecture is not really new...

Proposition

If for all E > 0, Faber-Krahn for HΩ
E holds then Faber-Krahn holds for

DΩ.

Proof :
• If for all E > 0, Faber-Krahn for HΩ

E holds. In E = E1(Ω) there
holds

µD(

√
|Ω|
π

E1(Ω)) ≤ 0 and E1(D) ≤
√
|Ω|
π

E1(Ω).
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Why the new conjecture ?

It is related to the Bossel-Daners inequality (Faber-Krahn for Robin
Laplacian). Define for E > 0 :

λΩ
Rob(E) := inf

u∈H1(Ω)\{0}

‖∇u‖2
Ω + E

∫
∂Ω
|u|2ds

‖u‖2
Ω

Theorem
There holds

π

|Ω|
λDRob(

√
|Ω|
π

E) ≤ λΩ
Rob(E),

with equality if and only if Ω is a disk.

M. H. Bossel:
C.R. Acad. Sci. Paris. (1986)

D. Daners:
Math. Ann. (2006)
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The end !

Thank you for your attention !
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