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Introduction

The motivating problem is to analyze the multiplicity of the k-th
eigenvalue of the Dirichlet problem in a domain Ω in R2.
It is for example an old result of Cheng [Ch1976], that the multiplicity of
the second eigenvalue is at most 3 in the case of a compact manifold.
In [HOHON1997b] (Hoffmann-Ostenhof (M+T) and N. Nadirashvili) an
example with multiplicity 3 is proposed as a side product of the
production of a counter example to the nodal line conjecture (see also
[HOHON1997a], and the papers by Fournais [Fo2001] and Kennedy
[Ke2013] who extend to higher dimensions these counter examples,
introducing new methods).
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This example is based on the spectral analysis of the Laplacian in
domains consisting of a disc in which we have introduced on an interior
concentric circle suitable cracks.
We discuss the initial proof and complete it by one missing argument.

Figure: The domains with cracks for N = 2, N = 3 and N = 4.
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Numerics and theory

Although not needed for the positive results, we present numerical results
illustrating why some argument has to be modified and propose a fine
theoretical analysis of the spectral problem when the cracks are closed.
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Nodal line conjecture

This celebrated conjecture by Payne (1967) says that the nodal set of the
second eigenfunction of the Dirichlet Laplacian in Ω ⊂ R2 can not be a
closed curve in Ω. Another formulation is that the nodal set consists of a
line joining two points of the boundary. It has been proved to hold in the
convex case (Melas, Alessandrini).
The first counterexample was given by (Hoffmann-Ostenhof
(M+T)-Nadirashvili) and the starting point is the introduction of two
concentric open discs BR1 and BR2 with 0 < R1 < R2 and the
corresponding annulus MR1,R2 = BR2 \ B̄R1 . We choose R1 and R2 such
that

λ1(BR1) < λ1(MR1,R2) < λ2(BR1) , (1)

where, for ω ⊂ R2 bounded, λj(ω) denotes the j-th eigenvalue of the
Dirichlet Laplacian H in ω.

For fixed R1, λ1(MR1,R2) tends to +∞ as R2 → R1 (from above) and
tends to 0 as R2 → +∞ . Moreover R2 7→ λ1(MR1,R2) is decreasing.
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Assumptions

We introduce
DR1,R2 = BR1 ∪MR1,R2

and observe that under above condition

λ1(DR1,R2) = λ1(BR1)
λ2(DR1,R2) = λ1(MR1,R2)
λ3(DR1,R2) = min(λ2(BR1), λ2(MR1,R2)) .

(2)

If Condition (1) is important in the construction of the counter-example
to the nodal line conjecture, the weaker assumption

max(λ1(BR1), λ1(MR1,R2)) < min(λ2(BR1), λ2(MR1,R2)) . (3)

suffices for the multiplicity question. Under this condition, we have :

λ1(DR1,R2) = min(λ1(BR1), λ1(MR1,R2))
λ2(DR1,R2) = max(λ1(BR1), λ1(MR1,R2))
λ3(DR1,R2) = min(λ2(BR1), λ2(MR1,R2)) ,

(4)

and it is not excluded (we are in the non connected situation) to consider
the case λ1(DR1,R2) = λ2(DR1,R2).
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Carving

We now carve holes in ∂BR1 such that DR1,R2 becomes a domain. For
N ∈ N∗ and ε ∈ [0, πN ], we introduce (see Figure 1 for N = 2, 3, 4)

D(N, ε) = DR1,R2 ∪N−1
j=0 {x ∈ R2 , r = R1 , θ ∈ (

2πj
N
− ε, 2πj

N
+ ε)} . (5)

Figure: The domains with cracks for N = 2.
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The theorem stated in [HOHON2] is the following :

Main Theorem

Let N ≥ 3, then there exists ε ∈ (0, πN ) such that λ2(D(N, ε)) has
multiplicity 3.

The proof given in [HOHON2] works only for even integers N ≥ 4. So we
improve this result by giving a proof for N ≥ 3 , therefore giving the first
example of an open set Ω := D(3, ε) where the number of components of
∂Ω equals 4 .

It is natural to expect that for other domains with the appropriate
symmetry and the same connectivity as in the Main Theorem one can
also show using a similar approach as presented in this work that the
second eigenvalue can have multiplicity 3.
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The main theorem leads to the following question :
Is there a bounded domain Ω ⊂ R2 whose boundary ∂Ω has strictly less
than 4 components so that λ2(Ω) has multiplicity 3 ?

This is also a motivation for analyzing the cases N = 1, 2.

The natural conjecture would be that for simply connected domains Ω,
λ2(Ω) has at most multiplicity 2. The convex case is known (Lin).
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N for the nodal line conjecture

Till recently the N leading to an example with a closed nodal line was
estimated to 104 !

Recently (March 2021), in a paper submitted to ArXiv, J. Dahne, J.
Gomez-Serrano and K. Hou have produced an example with six holes.
Instead of considering a carved circle they start from an hexagone and
the holes are given by six equilateral triangles.
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About numerics for the multiplicity question

We consider for the numerics the following specific choice of the pair
(R1,R2). We take R2 = 1, and then take as 0 < R1 < 1 the radius of the
circle on which the second radial eigenfunction vanishes. This
corresponds to R1 ∼ 0.4356.

In this case, we have λ1(BR1) = λ1(MR1,R2) and the interesting point is
that λ1(BR1) = λ6(BR2) is an eigenvalue of the Dirichlet Laplacian in
D(N, ε) for any ε ∈ [0, πN ].
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Figure 2 : N=3

We can predict as N = 3 a second eigenvalue of multiplicity 3 for
ε ∼ 0.29. A second crossing appears for ε ∼ 0.96 but corresponds to a
third eigenvalue of multiplicity 3. The eigenvalues correspond to ` = 0
(invariant case) and to ` = 1 (other symmetry space), the eigenvalues for
` = 1 having multiplicity 2.
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Figure: Six lowest eigenvalues in function of ε ∈ (0, π
3 ).
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The case N = 4

We see a first crossing for ε ∼ 0.27 where the multiplicity becomes 3.
Two other crossings occur for ε ∼ 0.475 and ε ∼ 0.782.
The eigenvalues correspond to ` = 0 , 1 , 2.
The eigenvalues for ` = 1 having multiplicity 2.
The eigenvalues for ` = 0 and 2 are simple for ε ∈ (0, π4 )
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Figure: 8 lowest eigenvalues in D(N, ε′/2)) in function of ε′ = 2ε ∈ (0, π
2 ).
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Symmetry spaces (explaining the ”`”)

We recall some basic representation theory for finite groups.

We consider a Hamiltonian which is the Dirichlet realization of the
Laplacian in an open set Ω which is invariant by the action of the group
GN generated by the rotation g by 2π

N .

The initial Hilbert space is H := L2(Ω,R) but it is also convenient to
work in HC := L2(Ω,C).
In this case, it is natural to analyze the eigenspaces attached to the
irreducible representations of the group GN .

The theory will in particular apply for the family of open sets
Ω = D(N, ε).
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The theory is simpler for complex Hilbert spaces i.e. HC := L2(Ω,C), but
the multiplicity property appears when considering operators on real
Hilbert spaces, i.e H := L2(Ω,R).

In HC, we introduce for ` = 0, · · · ,N − 1,

B` = {w ∈ HC | gw = e2πi`/Nw} . (6)

For ` = 0, this corresponds to the invariant situation. Hence in the model
above (where Ω = BR2) u0 and u6 belong to B0.

We also observe that the complex conjugation sends B` onto BN−`.

Hence, except in the cases ` = 0 and ` = N
2 the corresponding

eigenspaces are of even dimension.

The second case appears only if N is even.
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For 2` 6= N, one can alternately come back to real spaces by introducing
for 0 < ` < N

2 (` ∈ N)
C` = B` ⊕ BN−` (7)

and observing that C` can be recognized as the complexification A` ⊗ C
of the real space A`

A` = {u ∈ H | u − 2 cos(2`π/N)gu + g2u = 0} . (8)

For ` = 0 and ` = N
2 (if N is even), we define A` by

B` = A` ⊗ C . (9)
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Under the invariance condition on the domain, the Dirichlet Laplacian
commutes with the natural action of g in L2. Hence we get for
0 ≤ ` ≤ N/2 a family of well defined selfadjoint operators H(`) obtained
by restriction of H to A`.

Note that except for ` = 0 and ` = N
2 all the eigenspaces of H(`) have

even multiplicity.

The other point is that we have continuity and monotonicity with respect
to ε of the eigenvalues (see Stollman).

Note also that

σ(H(ε,N)) = ∪0≤`≤ N
2
σ(H(`)(ε,N)) .
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Remark

When N is even, a particular role is played by g
N
2 which corresponds to

the inversion considered in [HOHON1997b].

One can indeed decompose the Hilbert space H (or HC) using the
symmetry with respect to g

N
2 and get the decomposition

H = Heven ⊕Hodd , (10)

and
H(ε,N) = Heven(ε,N)⊕ Hodd(ε,N) . (11)

One can compare this decomposition with the previous one.
We observe that A` belongs to Heven if ` is even and to Hodd if ` is odd.
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Upper bound : the regularity assumptions in Cheng’s
statement revisited

In [Ch1976], S.Y. Cheng proved that the multiplicity of the second
eigenvalue is at most 3. This bound is sharp, achieved for the round
metric on S2. Cheng’s proof is actually using a regularity assumption
which is not satisfied by D(N, ε).

This domain has indeed cracks and we need a description of the nodal
line structure near corners or cracks.

We recall that for an eigenfunction u the nodal set N(u) of u is defined by

N (u) := {x ∈ Ω , | u(x) = 0} .

The analysis in this case is treated in Helffer, Hoffmann-Ostenhof, and
Terracini [5] (Theorem 2.6).

With this complementary analysis near the cracks, we can follow the
proof of Hoffmann-Ostenhof–Michor-Nadirashvili [8] (Weak theorem).
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This proof includes an extended version of Euler’s Polyhedral formula

Proposition Euler

Let Ω be a C 1,+-domain with possibly corners of opening a απ for
0 < α ≤ 2. If u is an eigenfunction of the Dirichlet Laplacian in Ω, N
denotes the nodal set of u and µ(N ) denotes the cardinality of the
components of Ω \ N , i.e. the number of nodal domains, then, if N is
not empty,

µ(N ) ≥
∑

x∈N∩Ω

(ν(x)− 1) + 2 , (12)

where ν(x) is the multiplicity of the critical point x ∈ N (i.e. the number
of lines crossing at x).

a. α = 2 corresponds to the crack case.
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Origin of this formula

Proposition HOMiNa

Let Ω be an open set in R2 with piecewise C 1 boundary and D be a
nodal partition of an eigenfunction u of the Dirichlet Laplacian in Ω with
N := {u−1(0) ∩ Ω} as boundary set. Let b0 be the number of
components of ∂Ω and b1 be the number of components of N ∪ ∂Ω.
Denote by ν(xi ) and ρ(yi ) the number of curves crossing at some critical
points xi ∈ X (N ), respectively some boundary points yi ∈ Y (N ). Then

k = 1 + b1 − b0 +
∑

xi∈X (N )

(
ν(xi )− 1

)
+

1
2

∑
yi∈Y (N )

ρ(yi ) . (13)

Here the structure of the nodal set of an eigenfunction plays an
important role (Bers (1955), Alessandrini (1987),...).
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For a second eigenfunction µ(N ) = 2, (this is a very simple and
particular case of Courant’s theorem) and the upper bound of the
multiplicity by 3 comes by contradiction.

Assuming that the multiplicity of the second eigenvalue is ≥ 4, one can,
for any x ∈ Ω, construct some ux in the second eigenspace such that ux
has a critical zero at x (hence with ν(x) ≥ 2). This is simply by linear
algebra (we have three equations).

This gives the contradiction with Euler’s formula. Hence we have

Proposition

Let Ω be a C 1,+-domain with possibly corners of opening απ for
0 < α ≤ 2. Then the multiplicity of the second eigenvalue of the Dirichlet
Laplacian in Ω is not larger than 3.
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Remarks and complements

An upper bound of the multiplicity by 2 is obtained by C.S. Lin
when Ω is convex (see [Li1987]).

Lin’s theorem can be extended to the case of a simply connected
domain for which the nodal line conjecture holds.
If the multiplicity of the second eigenvalue is larger than 2, one can
indeed find in the associated spectral space an eigenfunction whose
nodal set contains a point in the boundary where two half lines hit
the boundary.
This will contradict either the nodal line conjecture or Courant’s
theorem. See also [HOHON1997b] for some sufficient conditions on
domains for the nodal line conjecture to hold.
There are no result of this kind in dimension ≥ 3. Yves Colin de
Verdière [CdV1987] has for example shown that we can contruct for
any N a compact manifold for which the multiplicity of the second
eigenvalue is N. According to Nadirashvili (private communication to
the second author) this holds also for the Dirichlet problem.
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Multiplicity bounds for closed surface of genus 0.
(HOHONa1999]

Let (M, g) be a closed connected smooth Riemannian surface with genus
0, i.e. M is topologically a sphere (in particular it is simply-connected
with Euler characteristic 2), and g a smooth metric. We are also given a
smooth, real valued function V on M, and we consider the eigenvalue
problem for the Schrödinger operator −∆ + V on M, with eigenvalues
(λk)∞k=1. Nadirashvili in [Na1987] proved that, for k ≥ 3,

mult(λk) ≤ (2k − 1). The general idea of the proof is to investigate the
zeros of eigenfunctions u in the eigenspace U(λk), to use the fact that
κ(u) ≤ k (Courant’s theorem), and Euler’s formula for the nodal
partitions Du. In [HOHONa1999] , M. and T. Hoffmann-Ostenhof and
Nadirashvili, prove the following result.

Theorem

For (M, g ,V ) as above, and for k ≥ 3, mult(λk) ≤ (2k − 3).
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Comments on HoMiNa (1999) following Bérard-Helffer

There is a huge litterature on the subject. See a survey in
preparation of P. Bérard and B. Helffer.
Hoffmann-Ostenhof-Michor-Nadirashvili (1999), extending Chen’s
result, state the following :
Let Ω be a regular bounded domain in R2 and consider the Dirichlet
eigenvalue problem for the Laplacian or for a Schrödinger operator
of the form −∆ + V . Then, for k ≥ 3, the multiplicity of the k-th
Dirichlet eigenvalue of a plane bounded domain is less than or equal
to (2k − 3).
Some proofs have to be clarified. In particular, A. Berdnikov (2018)
observed a gap in the proof of [HoMiNa] in the non simply
connected case. Hence, if the bound ≤ (2k − 2) seems OK in the
non simply connected case, the bound (2k − 3) seems open in the
non simply connected case. There is at the moment also a gap in
the simply connected case.

Bernard Helffer (after Helffer, Hoffmann-Ostenhof, Jauberteau, Léna) Multiplicity



26

Proof of the main Theorem

We first observe that for the disk of radius R we have

λ1(BR) < λ2(BR) = λ3(BR) < λ4(BR) = λ5(BR) < λ6(BR) . (14)

The eigenfunctions u1 and u6 are radial. We will use this property with
R = R2.

Proposition

For N ≥ 3, there exists ε ∈ (0, πN ) s.t. λ2(H(ε,N)) belongs to
σ(H(`)(ε,N)) for some 0 < ` < N

2 AND to σ(H(`)(ε,N)) for ` = 0 or (in
the case N even) N

2 .
In particular, the multiplicity of λ2 for this value of ε is exactly 3.
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Note that the condition N ≥ 3 implies the existence of at least one
` ∈ (0, N2 ).
We now proceed by contradiction. Suppose the contrary. By continuity of
the second eigenvalue, we should have for all ε > 0

either λ2(H(ε,N)) belongs to ∪0<`< N
2
σ(H(`)(ε,N)))

and not to σ(H(0)(ε,N)) ∪ σ(H(N/2)(ε,N)) ,

or λ2(H(ε,N)) ∈ σ(H(0)(ε,N)) ∪ σ(H(N/2)(ε,N))

and not to ∪0<`< N
2
σ(H(`)(ε,N))) .

But, as we shall see later, the analysis for ε > 0 small enough shows that
we should be in the first case and the analysis for ε close to π

N that we
should be in the second case. Hence a contradiction.
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The analysis for ε > 0 small is by perturbation a consequence of the
continuity and the analysis of ε = 0. Here we see from (2) that
λ2(DR1,R2) is simple and belongs to σ(H(0)(0,N)).

If we only have (3), we observe that the two first eigenvalues belong to
σ(H(0)(0,N)) and the argument is unchanged.

The analysis for ε close to π
N is by perturbation a consequence of the

continuity and the analysis of ε = π
N . Here we see from (14) that λ2(BR2)

has multiplicity two corresponding to σ(H(1)( πN ,N)).

So we have proven that for this value of ε the multiplicity is at least 3,
hence equals 3 by the extension of Cheng’s statement [Ch1976].
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Theoretical asymptotics in domains with cracks

To simplify, we look at the case N = 2 and consider 0 < R1 < R2.
Motivated by the previous question, we analyze the different spectral
problems according to the symmetries. This leads us to consider on the
quarter of a disk (0 < θ < π

2 ) four different models. On the exterior circle
and on the cracks, we always assume the Dirichlet condition and then,
according to the boundary conditions retained for θ = 0 and θ = π/2, we
consider four test cases :

Case NND (homogeneous Neumann boundary conditions for θ = 0
and θ = π/2).
Case DDD (homogeneous Dirichlet boundary conditions for θ = 0
and θ = π/2).
Case NDD (homogeneous Neumann boundary conditions for θ = 0
and homogeneous Dirichlet boundary conditions for θ = π/2).
Case DND (homogeneous Dirichlet boundary conditions for θ = 0
and homogeneous Neumann boundary conditions for θ = π/2).

This is immediately related to the problem on the cracked disk by using
the symmetries with respect to the two axes. The symmetry properties
lead either to Dirichlet or Neumann.
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The case DND

We use the notation

B+
R2

:= BR2 ∩ {x2 > 0} ;
x+ := (0,R1) ;
δ := π

2 − ε ;
K+
δ = {r = R1, θ ∈ [π2 − δ,

π
2 + δ]

and look at the limit as δ → 0. By the symmetry arguments we have

λDND
1 (D̂(2, ε)) = λ1(B+

R2
\ K+

δ ).

The family of compact sets (K+
δ )δ>0 concentrates to the set {x+}.

The reference Abatangelo-Felli-Hillairet-Léna [1] provides two-term
asymptotic expansions in this situation.
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Abatangelo-Felli-Hillairet-Léna [1] result

It gives

λ1(B+
R2
\K+

δ ) = λ1(B+
R2

)+u(x+)2 2π∣∣log(diam(K+
δ )
∣∣+o

(
1∣∣log(diam(K+

δ )
∣∣
)
,

where diam(K+
δ ) is the diameter of K+

δ and u an eigenfunction
associated with λ1(B+

R2
), normalized in L2(B+

R2
).

Using diam(K+
δ ) = 2R1 sin(δ) and the normalized eigenfunction

corresponding to Dirichlet in B+
R2

we find as ε→ 0

λDND
1 (D̂(2, ε))

= j21,1 + + 8
R2

2

(
J1(j1,1R1/R2)

J′
1(j1,1)

)2
1

|log(π/2−ε)|

+o
(

1
|log(π/2−ε)|

)
,

(15)

where j`,k is the k-th zero of the Bessel function J` corresponding to the
integer ` ∈ N.
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The case of the quarter of a disk (DND) with D-cracks
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Figure: Case Dirichlet-Neumann : three first eigenvalues
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