Adaptive Spectral Decomposition for Inverse Medium Problems

Marcus Grote

Joint work with Daniel Baffet and Yannik Gleichmann

Department of Mathematics and Computer Science, University of Basel Basel, Switzerland

Numerical Waves 2021, Nice

Marcus Grote

Outline

- 1. Motivation
- 2. Adaptive Spectral Decomposition (ASD)
- 3. Approximation Theory
- 4. Numerical Examples
- 5. Adaptive Spectral Inversion (ASI)
- 6. Numerical Examples
- 7. Concluding Remarks

Motivation

Forward problem

Given a source f_{ℓ} , a medium u; y_{ℓ} satisfies the wave equation in time domain:

$$\begin{cases} \frac{\partial^2}{\partial t^2} y_{\ell} - \nabla \cdot (u(x) \nabla y_{\ell}) = f_{\ell} & \text{in } \Omega \times I, \\ IC(y_{\ell}(\cdot, T_1)) = 0 & \text{in } \Omega \\ BC(y_{\ell}) = 0 & \text{on } \partial\Omega \times I. \end{cases}$$

In a bounded spatial domain $\Omega \subset \mathbb{R}^d$ and time domain $I = (T_1, T_2) \subset \mathbb{R}$.

Motivation

Forward problem

Given a source f_{ℓ} , a medium u; y_{ℓ} satisfies the wave equation in time domain:

$$\begin{cases} \frac{\partial^2}{\partial t^2} y_{\ell} - \nabla \cdot (u(x) \nabla y_{\ell}) = f_{\ell} & \text{in } \Omega \times I, \\ IC(y_{\ell}(\cdot, T_1)) = 0 & \text{in } \Omega \\ BC(y_{\ell}) = 0 & \text{on } \partial\Omega \times I. \end{cases}$$

In a bounded spatial domain $\Omega \subset \mathbb{R}^d$ and time domain $I = (T_1, T_2) \subset \mathbb{R}$.

Inverse problem

Suppose the medium u inside Ω is illuminated by sources f_{ℓ} , with $\ell = 1, \ldots, N_s$, and the responses y_{ℓ}^{obs} are recorded on $\Gamma \times I$, $\Gamma \subset \partial \Omega$.

Goal: find u

Goal: find u

Formulation as an optimization problem:

$$u_* \in \operatorname*{arg\,min}_{v} \mathcal{J}(v),$$

where ${\cal J}$ is the (reduced) misfit

$$\mathcal{J}(v) = \frac{1}{2} \sum_{\ell=1}^{N_s} \int_{T_1}^{T_2} \left\| y_\ell(v) - y_\ell^{\text{obs}} \right\|_{L^2(\Gamma)}^2 \, dt.$$

Goal: find u

Formulation as an optimization problem:

$$u_* \in \operatorname*{arg\,min}_{v} \mathcal{J}(v),$$

where ${\cal J}$ is the (reduced) misfit

$$\mathcal{J}(v) = \frac{1}{2} \sum_{\ell=1}^{N_s} \int_{T_1}^{T_2} \left\| y_\ell(v) - y_\ell^{\text{obs}} \right\|_{L^2(\Gamma)}^2 \, dt$$

Regularization:

Add a regularization term:

$$u_* \in \operatorname*{arg\,min}_v \left(\mathcal{J}(v) + \mathcal{R}(v) \right)$$

Finite dimensional search space:

$$u_* \in \underset{v \in \varphi_0 + \Phi_K}{\operatorname{arg\,min}} \mathcal{J}(v)$$

Marcus Grote

How to choose the space Φ_K , $(\dim \Phi_K = K)$?

- Discretization by, e.g., finite elements: Φ_K = space of discrete media
- Prior knowledge (regularization by parametrization)
- Adaptively

How to choose the space Φ_K , $(\dim \Phi_K = K)$?

- Discretization by, e.g., finite elements: $\Phi_K =$ space of discrete media
- Prior knowledge (regularization by parametrization)
- Adaptively
 - 1. Choose initial search space $\varphi_0^{(1)} + \Phi^{(1)}$, $(\dim \Phi^{(1)} = K_1)$
 - 2. For $n \ge 1$
 - Solve

$$u^{(n)} \in \operatorname*{arg\,min}_{v \in \varphi_0^{(n)} + \Phi^{(n)}} \mathcal{J}(v)$$

e.g. with Newton-type method: BFGS, Gauss-Newton

- choose new search space $\varphi_0^{(n+1)} + \Phi^{(n+1)}$
- 3. End

How to choose the space Φ_K , $(\dim \Phi_K = K)$?

- Discretization by, e.g., finite elements: $\Phi_K =$ space of discrete media
- Prior knowledge (regularization by parametrization)
- Adaptively
 - 1. Choose initial search space $\varphi_0^{(1)} + \Phi^{(1)}$, $(\dim \Phi^{(1)} = K_1)$
 - 2. For $n \ge 1$
 - Solve

$$u^{(n)} \in \operatorname*{arg\,min}_{v \in \varphi_0^{(n)} + \Phi^{(n)}} \mathcal{J}(v)$$

e.g. with Newton-type method: BFGS, Gauss-Newton

- choose new search space $\varphi_0^{(n+1)} + \Phi^{(n+1)}$
- 3. End

Guiding principles for choice of new search space:

- keep the dimension K_{n+1} small, and
- represent the medium more accurately

How to choose the space Φ_K , $(\dim \Phi_K = K)$?

- Discretization by, e.g., finite elements: $\Phi_K =$ space of discrete media
- Prior knowledge (regularization by parametrization)
- Adaptively
 - 1. Choose initial search space $\varphi_0^{(1)} + \Phi^{(1)}$, $(\dim \Phi^{(1)} = K_1)$
 - 2. For $n \ge 1$
 - Solve

$$u^{(n)} \in \operatorname*{arg\,min}_{v \in \varphi_0^{(n)} + \Phi^{(n)}} \mathcal{J}(v)$$

e.g. with Newton-type method: BFGS, Gauss-Newton

- choose new search space $\varphi_0^{(n+1)} + \Phi^{(n+1)}$
- 3. End

Guiding principles for choice of new search space:

- keep the dimension K_{n+1} small, and
- represent the medium more accurately

Idea: Use current medium $u^{(n)}$ to construct $\varphi_0^{(n+1)} + \Phi^{(n+1)}$.

Marcus Grote

Adaptive Spectral Decomposition (ASD)

[De Buhan, Osses, 2010], [De Buhan, Kray, 2013], [G., Kray, Nahum, 2017], [Baffet, G., Tang, 2020], [Baffet, Gleichmann, G., 2021, *preprint*]:

Given an approximation $u^{(n-1)}$ of u_* , seek $u^{(n)}$ in

$$\varphi_0^{(n)} + \Phi^{(n)}, \qquad \Phi^{(n)} = \operatorname{span}(\varphi_k^{(n)})_{k=1}^{K_n}$$

where

Adaptive Spectral Decomposition (ASD)

[De Buhan, Osses, 2010], [De Buhan, Kray, 2013], [G., Kray, Nahum, 2017], [Baffet, G., Tang, 2020], [Baffet, Gleichmann, G., 2021, *preprint*]:

Given an approximation $u^{(n-1)}$ of u_* , seek $u^{(n)}$ in

$$\varphi_0^{(n)} + \Phi^{(n)}, \qquad \Phi^{(n)} = \operatorname{span}(\varphi_k^{(n)})_{k=1}^{K_n}$$

where

$$L_{\varepsilon}[u^{(n-1)}]\varphi_0^{(n)}=0 \quad \text{in }\Omega, \qquad \varphi_0^{(n)}=u^{(n-1)} \quad \text{on }\partial\Omega,$$

and for $k = 1, \ldots, K_n$

$$L_{\varepsilon}[u^{(n-1)}]\varphi_k^{(n)} = \lambda_k^{(n)}\varphi_k^{(n)} \quad \text{in } \Omega, \qquad \varphi_k^{(n)} = 0 \quad \text{on } \partial\Omega,$$

with

Adaptive Spectral Decomposition (ASD)

[De Buhan, Osses, 2010], [De Buhan, Kray, 2013], [G., Kray, Nahum, 2017], [Baffet, G., Tang, 2020], [Baffet, Gleichmann, G., 2021, *preprint*]:

Given an approximation $u^{(n-1)}$ of u_* , seek $u^{(n)}$ in

$$\varphi_0^{(n)} + \Phi^{(n)}, \qquad \Phi^{(n)} = \operatorname{span}(\varphi_k^{(n)})_{k=1}^{K_n}$$

where

$$L_{\varepsilon}[u^{(n-1)}]\varphi_0^{(n)}=0 \quad \text{in }\Omega, \qquad \varphi_0^{(n)}=u^{(n-1)} \quad \text{on }\partial\Omega,$$

and for $k = 1, \ldots, K_n$

$$L_{\varepsilon}[u^{(n-1)}]\varphi_k^{(n)} = \lambda_k^{(n)}\varphi_k^{(n)} \quad \text{in } \Omega, \qquad \varphi_k^{(n)} = 0 \quad \text{on } \partial\Omega,$$

with an elliptic operator

$$L_{\varepsilon}[w]v = -\nabla \cdot (\mu[w]\nabla v),$$

$$\mu[w](x) = \frac{1}{\sqrt{|\nabla w(x)|^2 + \varepsilon^2}},$$

 $\varepsilon > 0$ to avoid dividing by 0. Typically we set $\varepsilon = 10^{-8}$. Note that $\varphi_0^{(n)}$ and $\Phi^{(n)}$ depend on $u^{(n-1)}$.

Marcus Grote

$$L_{\varepsilon}[w]v = -\nabla \cdot (\mu(w)\nabla v), \quad \mu[w](x) = \frac{1}{\sqrt{|\nabla w(x)|^2 + \varepsilon^2}}$$

If ∇w is not well defined, e.g. w is piecewise constant, we need an admissible approximation $w_\delta\approx w$

w piecewise constant

$$L_{\varepsilon}[w]v = -\nabla \cdot (\mu(w)\nabla v), \quad \mu[w](x) = \frac{1}{\sqrt{|\nabla w(x)|^2 + \varepsilon^2}}$$

If ∇w is not well defined, e.g. w is piecewise constant, we need an admissible approximation $w_\delta \approx w$ such that

$$\lim_{\delta \to 0} \|w - w_{\delta}\|_{L^{2}(\Omega)} = 0, \quad \nabla w_{\delta} \in L^{\infty}(\Omega), \quad \operatorname{supp}(\nabla w_{\delta}) \subset \mathcal{M}_{\delta},$$

where \mathcal{M}_{δ} is a δ neighborhood around the discontinuities of w, and there exists C > 0 such that for every $\delta > 0$: $\delta \|\nabla w_{\delta}\|_{L^{\infty}(\Omega)} \leq C$.

These properties hold, for instance, for

w piecewise constant

$$L_{\varepsilon}[w]v = -\nabla \cdot (\mu(w)\nabla v), \quad \mu[w](x) = \frac{1}{\sqrt{|\nabla w(x)|^2 + \varepsilon^2}}$$

If ∇w is not well defined, e.g. w is piecewise constant, we need an admissible approximation $w_\delta \approx w$ such that

$$\lim_{\delta \to 0} \|w - w_{\delta}\|_{L^{2}(\Omega)} = 0, \quad \nabla w_{\delta} \in L^{\infty}(\Omega), \quad \operatorname{supp}(\nabla w_{\delta}) \subset \mathcal{M}_{\delta},$$

where \mathcal{M}_{δ} is a δ neighborhood around the discontinuities of w, and there exists C > 0 such that for every $\delta > 0$: $\delta \|\nabla w_{\delta}\|_{L^{\infty}(\Omega)} \leq C$.

These properties hold, for instance, for

▶ the H^1 -conforming \mathcal{P}^r , r > 0, FE interpolant on families of quasi-uniform meshes with mesh-size $h = \delta$

$$L_{\varepsilon}[w]v = -\nabla \cdot (\mu(w)\nabla v), \quad \mu[w](x) = \frac{1}{\sqrt{|\nabla w(x)|^2 + \varepsilon^2}}$$

If ∇w is not well defined, e.g. w is piecewise constant, we need an admissible approximation $w_\delta \approx w$ such that

$$\lim_{\delta \to 0} \|w - w_{\delta}\|_{L^{2}(\Omega)} = 0, \quad \nabla w_{\delta} \in L^{\infty}(\Omega), \quad \operatorname{supp}(\nabla w_{\delta}) \subset \mathcal{M}_{\delta},$$

where \mathcal{M}_{δ} is a δ neighborhood around the discontinuities of w, and there exists C > 0 such that for every $\delta > 0$: $\delta \|\nabla w_{\delta}\|_{L^{\infty}(\Omega)} \leq C$.

These properties hold, for instance, for

- ▶ the H^1 -conforming \mathcal{P}^r , r > 0, FE interpolant on families of quasi-uniform meshes with mesh-size $h = \delta$
- the convolution of w with a smoothing kernel (mollifier)

Example (numerical)

$$L_{\varepsilon}[u_{\delta}]v = -\nabla \cdot (\mu(u_{\delta})\nabla v), \qquad \mu[u_{\delta}](x) = \frac{1}{\sqrt{|\nabla u_{\delta}(x)|^2 + \varepsilon^2}}, \quad \varepsilon > 0$$

Marcus Grote

Example (numerical)

$$L_{\varepsilon}[u_{\delta}]v = -\nabla \cdot (\mu(u_{\delta})\nabla v), \qquad \mu[u_{\delta}](x) = \frac{1}{\sqrt{|\nabla u_{\delta}(x)|^2 + \varepsilon^2}}, \quad \varepsilon > 0$$

Marcus Grote

Link to Total Variation

> For smooth functions, the total variation functional is given by

$$\mathrm{TV}(v) = \|\nabla v\|_{L^1(\Omega)} = \int_{\Omega} |\nabla v|$$

and its Fréchet derivative by

$$D \operatorname{TV}(v) = -\nabla \cdot \left(\frac{\nabla v}{|\nabla v|}\right).$$

Commonly used in image processing for edge-preserving noise removal [Rudin, Osher, Fatemi, 1992], etc.

Link to Total Variation

> For smooth functions, the total variation functional is given by

$$\mathrm{TV}(v) = \|\nabla v\|_{L^1(\Omega)} = \int_{\Omega} |\nabla v|$$

and its Fréchet derivative by

$$D \operatorname{TV}(v) = -\nabla \cdot \left(\frac{\nabla v}{|\nabla v|}\right).$$

Commonly used in image processing for edge-preserving noise removal [Rudin, Osher, Fatemi, 1992], etc.

▶ For the "smoothed" TV functional

$$\mathrm{TV}_{\varepsilon}(v) = \int_{\Omega} \sqrt{|\nabla v|^2 + \varepsilon^2}$$

we have

$$D \operatorname{TV}_{\varepsilon}(v) = -\nabla \cdot \left(\frac{\nabla v}{\sqrt{|\nabla v|^2 + \varepsilon^2}}\right) = L_{\varepsilon}[v]v,$$

where

$$L_{\varepsilon}[w]v = -\nabla \cdot (\mu(w)\nabla v), \qquad \mu[w](x) = \frac{1}{\sqrt{|\nabla w(x)|^2 + \varepsilon^2}}.$$

G., Kray, Nahum, Inverse Problems 33, 2017

Marcus Grote

Approximation theory

Goal: Given u piecewise constant; understand the behavior of the first eigenfunctions of $L_{\varepsilon}[u_{\delta}]$ for $u_{\delta} \approx u$ and the accuracy of the best L^2 approximation of u in $\varphi_0 + \Phi_K$.

Approximation theory

Goal: Given u piecewise constant; understand the behavior of the first eigenfunctions of $L_{\varepsilon}[u_{\delta}]$ for $u_{\delta} \approx u$ and the accuracy of the best L^2 approximation of u in $\varphi_0 + \Phi_K$.

Definitions:

For simplicity u = 0 near $\partial \Omega$. Let $\Omega \subset \mathbb{R}^d$ be open, bounded and with Lipschitz boundary,

$$u(x) = \sum_{k=1}^{K} \alpha_k \chi_{A_k}(x), \quad \alpha_k \neq 0,$$

where χ_{A_k} is the characteristic function of a Lipschitz domain $A_k \subset \Omega$ with connected and mutually disjoint boundaries.

Marcus Grote

Approximation theory

Goal: Given u piecewise constant; understand the behavior of the first eigenfunctions of $L_{\varepsilon}[u_{\delta}]$ for $u_{\delta} \approx u$ and the accuracy of the best L^2 approximation of u in $\varphi_0 + \Phi_K$.

Definitions:

For simplicity u = 0 near $\partial \Omega$. Let $\Omega \subset \mathbb{R}^d$ be open, bounded and with Lipschitz boundary,

$$u(x) = \sum_{k=1}^{K} \alpha_k \chi_{A_k}(x), \quad \alpha_k \neq 0,$$

where χ_{A_k} is the characteristic function of a Lipschitz domain $A_k \subset \subset \Omega$ with connected and mutually disjoint boundaries.

For each $\delta > 0$ let

Marcus Grote

Consider a closed (finite or infinite) subspace $\mathcal{V}_0^{\delta} \subset H_0^1(\Omega)$.

Let $\lambda \in \mathbb{R}$ and $\varphi \in \mathcal{V}_0^{\delta}$ be an eigenvalue and eigenfunction of $L_{\varepsilon}[u_{\delta}]$ in \mathcal{V}_0^{δ} , i.e.

$$B[\varphi, w] = \lambda \langle \varphi, w \rangle, \qquad \forall w \in \mathcal{V}_0^\delta$$

where

$$B[v,w] = \langle \mu[u_{\delta}] \nabla v, \nabla w \rangle.$$

Since $L_{\varepsilon}[u_{\delta}]$ is elliptic

- $(\lambda_k)_k$ are the nondecreasing eigenvalues of $L_{\varepsilon}[u_{\delta}]$ in \mathcal{V}_0^{δ} with each eigenvalue repeated according to its multiplicity,
- $(\varphi_k)_k$ form an L^2 -orthonormal basis of \mathcal{V}_0^δ of corresponding eigenfunctions.

Consider a closed (finite or infinite) subspace $\mathcal{V}_0^{\delta} \subset H_0^1(\Omega)$.

Let $\lambda \in \mathbb{R}$ and $\varphi \in \mathcal{V}_0^{\delta}$ be an eigenvalue and eigenfunction of $L_{\varepsilon}[u_{\delta}]$ in \mathcal{V}_0^{δ} , i.e.

$$B[\varphi, w] = \lambda \langle \varphi, w \rangle, \qquad \forall w \in \mathcal{V}_0^\delta$$

where

$$B[v,w] = \langle \mu[u_{\delta}] \nabla v, \nabla w \rangle.$$

Since $L_{\varepsilon}[u_{\delta}]$ is elliptic

- (λ_k)_k are the nondecreasing eigenvalues of L_ε[u_δ] in V^δ₀ with each eigenvalue repeated according to its multiplicity,
- $(\varphi_k)_k$ form an L^2 -orthonormal basis of \mathcal{V}_0^δ of corresponding eigenfunctions.

Theorem [Baffet, G., Tang, 2020]

Let $u = \sum_{k=1}^{K} \alpha_k \chi_{A_k}$ and u_{δ} be an admissible approximation of u and let φ_k be the first K eigenfunctions of $L_{\varepsilon}[u_{\delta}]$ for $\varepsilon, \delta > 0$.

Then there exists a constant C > 0 such that for ε, δ sufficiently small

$$\|\nabla \varphi_k\|_{L^2(\mathbf{D}_{\delta})} \le C\sqrt{\varepsilon}.$$

Essentially, φ_k , k = 1, ..., K, of $L_{\varepsilon}[u_{\delta}]$ are "almost" constant. $\implies \Phi_K = \operatorname{span}(\varphi_k)_{k=1}^K$ should approximate u well.

Marcus Grote

Adaptive spectral decomposition

Consider $u = \sum_{k=1}^{K} \alpha_k \chi_{A_k}$

- 1. Approximate u by u_{δ}
- 2. Compute the first K eigenfunctions φ_k of $L_{\varepsilon}[u_{\delta}]$
- 3. Project u into $\Phi_K = \operatorname{span}(\varphi_k)_{k=1}^K$ to obtain $\Pi_K^{\varepsilon}[u_{\delta}]u \in \mathcal{V}_0^{\delta}$ via the standard orthogonal projection:

$$\Pi_K^{\varepsilon}[u_{\delta}]: L^2(\Omega) \to \Phi_K, \qquad \langle v - \Pi_K^{\varepsilon}[u_{\delta}]v, \varphi \rangle = 0 \quad \forall \varphi \in \Phi_K.$$

Adaptive spectral decomposition

Consider $u = \sum_{k=1}^{K} \alpha_k \chi_{A_k}$

- 1. Approximate u by u_{δ}
- 2. Compute the first K eigenfunctions φ_k of $L_{\varepsilon}[u_{\delta}]$
- 3. Project u into $\Phi_K = \operatorname{span}(\varphi_k)_{k=1}^K$ to obtain $\Pi_K^{\varepsilon}[u_{\delta}]u \in \mathcal{V}_0^{\delta}$ via the standard orthogonal projection:

$$\Pi_K^{\varepsilon}[u_{\delta}]: L^2(\Omega) \to \Phi_K, \qquad \langle v - \Pi_K^{\varepsilon}[u_{\delta}]v, \varphi \rangle = 0 \quad \forall \varphi \in \Phi_K.$$

Theorem [Baffet, Gleichmann, G., 2021, preprint]

Let $u = \sum_{k=1}^{K} \alpha_k \chi_{A_k}$ and u_{δ} be an admissible approximation of u, $(\varphi_k)_k$ the first K eigenfunctions of $L_{\varepsilon}[u_{\delta}]$ for $\varepsilon, \delta > 0$. Let $\Pi_{K}^{\varepsilon}[u_{\delta}]$ be the L^2 orthogonal projection on Φ_K .

Then, for every $v \in \text{span}(\chi_{A_k})_{k=1}^K$, there exists a constant C = C(v) > 0 such that for ε, δ sufficiently small

$$\|v - \Pi_K^{\varepsilon}[u_{\delta}]v\|_{L^2(\Omega)} \le C\sqrt{\varepsilon + \delta}.$$

In particular the above is true for v = u.

Marcus Grote

In a nutshell:

A medium u(x) with K piecewise constant inclusions can be approximated arbitrarily well as a linear combination of the first K eigenfunctions of $L_{\varepsilon}[u_{\delta}]$, with $u_{\delta} \approx u$.

In practice, the eigenfunctions are computed numerically, e.g. with finite elements and Matlab.

In a nutshell:

A medium u(x) with K piecewise constant inclusions can be approximated arbitrarily well as a linear combination of the first K eigenfunctions of $L_{\varepsilon}[u_{\delta}]$, with $u_{\delta} \approx u$.

In practice, the eigenfunctions are computed numerically, e.g. with finite elements and Matlab.

Numerical Examples

Figure: Medium u

 L^2 estimate: verification of $||u - \prod_{K}^{\varepsilon} [u_{\delta}]u||_{L^2(\Omega)} = \mathcal{O}(\sqrt{\varepsilon + \delta})$

Polygonal map of Switzerland

Polygonal map of Switzerland

Given the map of Switzerland in a polygonal form such that

$$u_{\rm CH} = \sum_{k=1}^{26} \alpha_k \chi_{A_k}$$

where each A_k (may) represents a single Canton. Compute the first 26 eigenfunctions of $L_{\varepsilon}[u_{\rm CH}]$.

 \implies we are able to project each Canton into $\operatorname{span}(\varphi_k)_{k=1}^{26}$:

Marmousi model [Martin, Wiley, Marfurt, 2006]

(a) The Marmousi model

(b) φ_0 with $e_{\rm rel} \approx 12.89 \,\%$

(c) AS projection with K = 100 and $e_{\rm rel} \approx 3.8 \,\%$

Marcus Grote

Adaptive Spectral Inversion

Goal: find $u_* \in \arg\min_v \mathcal{J}(v)$ For simplicity u = 0 near $\partial\Omega$ ($\implies \varphi_0^{(n)} = 0 \forall n$)

- 1. Choose initial search space $\Psi^{(1)} = \operatorname{span}\{\psi^{(1)}_1, \dots, \psi^{(1)}_{K_1}\}$
- 2. For $n \ge 1$

Solve:

$$u^{(n)} \in \operatorname*{arg\,min}_{v \in \Psi^{(n)}} \mathcal{J}(v)$$

Compute: the first eigenfunctions

$$\varphi_1^{(n+1)}, \dots, \varphi_{K_n}^{(n+1)} \quad \text{of } L_{\varepsilon}[u^{(n)}]$$

• Merge: compute an orthonormal basis $\Phi^{(n+1)}$ of

span
$$\left\{\varphi_1^{(n+1)}, \dots, \varphi_{K_n}^{(n+1)}, \psi_1^{(n)}, \dots, \psi_{K_n}^{(n)}\right\}$$

• Reduce: new basis/search space $\Psi^{(n+1)} \subset \Phi^{(n+1)}$ such that

$$\operatorname{proj}_{\Psi^{(n+1)}} u^{(n)} \approx u^{(n)}$$

3. End

Marcus Grote

Adaptive spectral inversion for the wave equation in time domain with absorbing boundary conditions.

Adaptive spectral inversion for the wave equation in time domain with absorbing boundary conditions.

- u discretized with standard \mathcal{P}^1 finite elements
- ▶ y_{ℓ} discretized with $\mathcal{P}_{b}^{2} = \mathcal{P}^{2} \oplus [b]$ FE, where b is the bubble function to ensure mass lumping

Adaptive spectral inversion for the wave equation in time domain with absorbing boundary conditions.

- u discretized with standard \mathcal{P}^1 finite elements
- ▶ y_{ℓ} discretized with $\mathcal{P}_{b}^{2} = \mathcal{P}^{2} \oplus [b]$ FE, where b is the bubble function to ensure mass lumping
- ► Synthetic data computed on a different 30 % finer mesh ⇒ NO inverse crime
- \triangleright 20 % noise added to exact observations (on the boundary)

Adaptive spectral inversion for the wave equation in time domain with absorbing boundary conditions.

- u discretized with standard \mathcal{P}^1 finite elements
- ▶ y_{ℓ} discretized with $\mathcal{P}_b^2 = \mathcal{P}^2 \oplus [b]$ FE, where b is the bubble function to ensure mass lumping
- ▶ Synthetic data computed on a different 30 % finer mesh ⇒ NO inverse crime
- \blacktriangleright 20 % noise added to exact observations (on the boundary)
- \blacktriangleright Ricker wavelet with central frequency $\nu=5$ [Hz] as sources f_ℓ
- $\blacktriangleright~N_s=32$ evenly distributed sources near the boundary
- ► SAA (sample average approximation) approach with only one single "super shot" [Haber, Chung, Herrman, 2012] ⇒ computational cost reduced by nearly 1/32

Adaptive spectral inversion for the wave equation in time domain with absorbing boundary conditions.

- u discretized with standard \mathcal{P}^1 finite elements
- ▶ y_{ℓ} discretized with $\mathcal{P}_b^2 = \mathcal{P}^2 \oplus [b]$ FE, where b is the bubble function to ensure mass lumping
- \blacktriangleright Synthetic data computed on a different 30 % finer mesh \implies NO inverse crime
- > 20~% noise added to exact observations (on the boundary)
- \blacktriangleright Ricker wavelet with central frequency $\nu=5$ [Hz] as sources f_ℓ
- ▶ $N_s = 32$ evenly distributed sources near the boundary
- ▶ SAA (sample average approximation) approach with only one single "super shot" [Haber, Chung, Herrman, 2012] \implies computational cost reduced by nearly 1/32
- \blacktriangleright About 50 BFGS iterations per optimization step
- ▶ Stop when the discrepancy principle is satisfied: given noisy data y^{obs} with $\|y^{\text{true}} y^{\text{obs}}\| \leq \eta$ then stop in iteration n_* when

$$\|y(u_{n_*}) - y^{\text{obs}}\| \le \tau\eta, \qquad \tau > 1.$$

Solution to the forward problem

(a) solution at time t = 0.7

(b) solution at time t = 0.9

(d) solution at time t = 1.2

Marcus Grote

Two discs

(a) $u_{\rm true}$

Two discs

Two discs

Three inclusions

(a) $u_{\rm true}$

Marcus Grote

Three inclusions

Three inclusions

Snapshots of the AS iterates:

(a) $u^{(1)}$

Subsalt FWI: Pluto 1.5 model¹ (Helmholtz Equation / frequency stepping):

Initial guess (borehole data at $x = x_E$)

Best L^2 approx. in $\varphi_0 + \Phi_K$, with K = 100

ASI solution (surface data, 20% noise)

 u_h (P^1 -FE), y_h (P^3 -FE), 351'360 elements,

(Baffet, G., Tang, Inv. Probl. 37, 2021).

¹http://epos-eu.cz/ssc/software/sw3d/data/plu/plu.htm

Concluding remarks

- Adaptive spectral inversion/decomposition
 - ► efficient way to represent piecewise constant media (K inclusions → K eigenfunctions)
 - much smaller number of control variables K
 - efficient alternative to standard Tikhonov regularization
 - robust to missing data or added noise
- Extra cost
 - φ_0 : solve elliptic (coercive) PDE at each basis update
 - φ_k : compute the first K eigenfunctions (Lanczos) of elliptic (coercive) operator
- Extensions
 - applies to multi-parameter inversion, too
 - Connection to (nonlinear) spectral decomposition in imaging (Gilboa et al.)
 - Adaptive spectral representation independent of model problem (Helmholtz, wave equation), i.e. useful for other inverse problems, too

Concluding remarks

- Adaptive spectral inversion/decomposition
 - ► efficient way to represent piecewise constant media (K inclusions → K eigenfunctions)
 - much smaller number of control variables K
 - efficient alternative to standard Tikhonov regularization
 - robust to missing data or added noise
- Extra cost
 - φ_0 : solve elliptic (coercive) PDE at each basis update
 - φ_k : compute the first K eigenfunctions (Lanczos) of elliptic (coercive) operator
- Extensions
 - applies to multi-parameter inversion, too
 - Connection to (nonlinear) spectral decomposition in imaging (Gilboa et al.)
 - Adaptive spectral representation independent of model problem (Helmholtz, wave equation), i.e. useful for other inverse problems, too

Thank you for your attention!