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Motivation
Forward problem

Given a source f`, a medium u; y` satisfies the wave equation in time domain:
∂2

∂t2
y` −∇ · (u(x)∇y`) = f` in Ω× I,

IC(y`(·, T1)) = 0 in Ω

BC(y`) = 0 on ∂Ω× I.

In a bounded spatial domain Ω ⊂ Rd and time domain I = (T1, T2) ⊂ R.

Inverse problem

Suppose the medium u inside Ω is illuminated
by sources f`, with ` = 1, . . . , Ns, and the re-
sponses yobs

` are recorded on Γ× I, Γ ⊂ ∂Ω.

Goal: find u
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Goal: find u

Formulation as an optimization problem:

u∗ ∈ arg min
v

J (v),

where J is the (reduced) misfit

J (v) =
1

2

Ns∑
`=1

∫ T2

T1

∥∥∥y`(v)− yobs
`

∥∥∥2

L2(Γ)
dt.

Regularization:

Add a regularization term:

u∗ ∈ arg min
v

(J (v)+R(v))

Finite dimensional search space:

u∗ ∈ arg min
v∈ϕ0+ΦK

J (v)
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Finite dimensional search space:
How to choose the space ΦK , (dim ΦK = K)?

I Discretization by, e.g., finite elements: ΦK = space of discrete media
I Prior knowledge (regularization by parametrization)
I Adaptively

1. Choose initial search space ϕ(1)
0 + Φ(1), (dim Φ(1) = K1)

2. For n ≥ 1
I Solve

u
(n) ∈ arg min

v∈ϕ(n)
0 +Φ(n)

J (v)

e.g. with Newton-type method: BFGS, Gauss-Newton
I choose new search space ϕ

(n+1)
0 + Φ(n+1)

3. End

Guiding principles for choice of new search space:

I keep the dimension Kn+1 small, and
I represent the medium more accurately

Idea: Use current medium u(n) to construct ϕ(n+1)
0 + Φ(n+1).
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Adaptive Spectral Decomposition (ASD)
[De Buhan, Osses, 2010], [De Buhan, Kray, 2013], [G., Kray, Nahum, 2017],
[Baffet, G., Tang, 2020], [Baffet, Gleichmann, G., 2021, preprint]:

Given an approximation u(n−1) of u∗, seek u(n) in

ϕ
(n)
0 + Φ(n), Φ(n) = span(ϕ

(n)
k )Knk=1

where

Lε[u
(n−1)]ϕ

(n)
0 = 0 in Ω, ϕ

(n)
0 = u(n−1) on ∂Ω,

and for k = 1, . . . ,Kn

Lε[u
(n−1)]ϕ

(n)
k = λ

(n)
k ϕ

(n)
k in Ω, ϕ

(n)
k = 0 on ∂Ω,

with an elliptic operator

Lε[w]v = −∇ · (µ[w]∇v),

µ[w](x) =
1√

|∇w(x)|2 + ε2
,

ε > 0 to avoid dividing by 0. Typically we set ε = 10−8.

Note that ϕ(n)
0 and Φ(n) depend on u(n−1).
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Admissible approximation

Lε[w]v = −∇ · (µ(w)∇v), µ[w](x) =
1√

|∇w(x)|2 + ε2

If ∇w is not well defined, e.g. w is piecewise constant, we need an admissible
approximation wδ ≈ w

such that

lim
δ→0
‖w − wδ‖L2(Ω) = 0, ∇wδ ∈ L∞(Ω), supp(∇wδ) ⊂Mδ,

whereMδ is a δ neighborhood around the discontinuities of w, and there exists
C > 0 such that for every δ > 0: δ‖∇wδ‖L∞(Ω) ≤ C.
These properties hold, for instance, for

I the H1-conforming Pr, r > 0, FE interpolant on families of quasi-uniform
meshes with mesh-size h = δ

I the convolution of w with a smoothing kernel (mollifier)

w piecewise constant

wδ as P1 interpolant wδ = k ∗ w

Marcus Grote Adaptive Spectral Decomposition for Inverse Medium Problems 7/27



Admissible approximation

Lε[w]v = −∇ · (µ(w)∇v), µ[w](x) =
1√

|∇w(x)|2 + ε2

If ∇w is not well defined, e.g. w is piecewise constant, we need an admissible
approximation wδ ≈ w such that

lim
δ→0
‖w − wδ‖L2(Ω) = 0, ∇wδ ∈ L∞(Ω), supp(∇wδ) ⊂Mδ,

whereMδ is a δ neighborhood around the discontinuities of w, and there exists
C > 0 such that for every δ > 0: δ‖∇wδ‖L∞(Ω) ≤ C.
These properties hold, for instance, for

I the H1-conforming Pr, r > 0, FE interpolant on families of quasi-uniform
meshes with mesh-size h = δ

I the convolution of w with a smoothing kernel (mollifier)

w piecewise constant

wδ as P1 interpolant wδ = k ∗ w

Marcus Grote Adaptive Spectral Decomposition for Inverse Medium Problems 7/27



Admissible approximation

Lε[w]v = −∇ · (µ(w)∇v), µ[w](x) =
1√

|∇w(x)|2 + ε2

If ∇w is not well defined, e.g. w is piecewise constant, we need an admissible
approximation wδ ≈ w such that

lim
δ→0
‖w − wδ‖L2(Ω) = 0, ∇wδ ∈ L∞(Ω), supp(∇wδ) ⊂Mδ,

whereMδ is a δ neighborhood around the discontinuities of w, and there exists
C > 0 such that for every δ > 0: δ‖∇wδ‖L∞(Ω) ≤ C.
These properties hold, for instance, for

I the H1-conforming Pr, r > 0, FE interpolant on families of quasi-uniform
meshes with mesh-size h = δ

I the convolution of w with a smoothing kernel (mollifier)

w piecewise constant wδ as P1 interpolant

wδ = k ∗ w

Marcus Grote Adaptive Spectral Decomposition for Inverse Medium Problems 7/27



Admissible approximation

Lε[w]v = −∇ · (µ(w)∇v), µ[w](x) =
1√

|∇w(x)|2 + ε2

If ∇w is not well defined, e.g. w is piecewise constant, we need an admissible
approximation wδ ≈ w such that

lim
δ→0
‖w − wδ‖L2(Ω) = 0, ∇wδ ∈ L∞(Ω), supp(∇wδ) ⊂Mδ,

whereMδ is a δ neighborhood around the discontinuities of w, and there exists
C > 0 such that for every δ > 0: δ‖∇wδ‖L∞(Ω) ≤ C.
These properties hold, for instance, for

I the H1-conforming Pr, r > 0, FE interpolant on families of quasi-uniform
meshes with mesh-size h = δ

I the convolution of w with a smoothing kernel (mollifier)

w piecewise constant wδ as P1 interpolant wδ = k ∗ w

Marcus Grote Adaptive Spectral Decomposition for Inverse Medium Problems 7/27



Example (numerical)

(a) Medium u

(b) Best L2 approximation

(c) ϕ0

(a) ϕ1 (b) ϕ2 (c) ϕ3 (d) ϕ4

Lε[uδ]v = −∇ · (µ(uδ)∇v), µ[uδ](x) =
1√

|∇uδ(x)|2 + ε2
, ε > 0
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Link to Total Variation
I For smooth functions, the total variation functional is given by

TV(v) = ‖∇v‖L1(Ω) =

∫
Ω

|∇v|

and its Fréchet derivative by

DTV(v) = −∇ ·
(
∇v
|∇v|

)
.

Commonly used in image processing for edge-preserving noise removal
[Rudin, Osher, Fatemi, 1992], etc.

I For the “smoothed” TV functional

TVε(v) =

∫
Ω

√
|∇v|2 + ε2

we have

DTVε(v) = −∇ ·

(
∇v√

|∇v|2 + ε2

)
= Lε[v]v,

where

Lε[w]v = −∇ · (µ(w)∇v), µ[w](x) =
1√

|∇w(x)|2 + ε2
.

G., Kray, Nahum, Inverse Problems 33, 2017
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Approximation theory
Goal: Given u piecewise constant; understand the behavior of the first
eigenfunctions of Lε[uδ] for uδ ≈ u and the accuracy of the best L2

approximation of u in ϕ0 + ΦK .

Definitions:
For simplicity u = 0 near ∂Ω.
Let Ω ⊂ Rd be open, bounded and with Lipschitz boundary,

u(x) =

K∑
k=1

αkχAk (x), αk 6= 0,

where χAk is the characteristic function of a Lipschitz domain Ak ⊂⊂ Ω with
connected and mutually disjoint boundaries.

For each δ > 0 let

Mδ =

K⋃
k=1

{x ∈ Ω | dist(x, ∂Ak) < δ} , Dδ = Ω \Mδ.

A1

A2

A3

Dδ

Mδ
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Consider a closed (finite or infinite) subspace Vδ0 ⊂ H1
0 (Ω).

Let λ ∈ R and ϕ ∈ Vδ0 be an eigenvalue and eigenfunction of Lε[uδ] in Vδ0 , i.e.

B[ϕ,w] = λ〈ϕ,w〉, ∀w ∈ Vδ0

where

B[v, w] = 〈µ[uδ]∇v,∇w〉.

Since Lε[uδ] is elliptic
I (λk)k are the nondecreasing eigenvalues of Lε[uδ] in Vδ0 with each

eigenvalue repeated according to its multiplicity,
I (ϕk)k form an L2-orthonormal basis of Vδ0 of corresponding eigenfunctions.

Theorem [Baffet, G., Tang, 2020]

Let u =
∑K
k=1 αkχAk and uδ be an admissible approximation of u and let ϕk

be the first K eigenfunctions of Lε[uδ] for ε, δ > 0.

Then there exists a constant C > 0 such that for ε, δ sufficiently small

‖∇ϕk‖L2(Dδ) ≤ C
√
ε.

Essentially, ϕk, k = 1, . . . ,K, of Lε[uδ] are “almost” constant.
=⇒ ΦK = span(ϕk)Kk=1 should approximate u well.
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Adaptive spectral decomposition

Consider u =
∑K
k=1 αkχAk

1. Approximate u by uδ
2. Compute the first K eigenfunctions ϕk of Lε[uδ]

3. Project u into ΦK = span(ϕk)Kk=1 to obtain Πε
K [uδ]u ∈ Vδ0 via the

standard orthogonal projection:

Πε
K [uδ] : L2(Ω)→ ΦK , 〈v −Πε

K [uδ]v, ϕ〉 = 0 ∀ϕ ∈ ΦK .

Theorem [Baffet, Gleichmann, G., 2021, preprint]

Let u =
∑K
k=1 αkχAk and uδ be an admissible approximation of u, (ϕk)k the

first K eigenfunctions of Lε[uδ] for ε, δ > 0.
Let Πε

K [uδ] be the L2 orthogonal projection on ΦK .

Then, for every v ∈ span(χAk )Kk=1, there exists a constant C = C(v) > 0 such
that for ε, δ sufficiently small

‖v −Πε
K [uδ]v‖L2(Ω) ≤ C

√
ε+ δ.

In particular the above is true for v = u.
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In a nutshell:

A medium u(x) with K piecewise constant inclusions can be approximated
arbitrarily well as a linear combination of the first K eigenfunctions of Lε[uδ],
with uδ ≈ u.

In practice, the eigenfunctions are computed numerically, e.g. with finite
elements and Matlab.

Numerical Examples

Figure: Medium u
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Numerical Examples

(a) uδ with δ = 0.05 · 2−1 (b) uδ with δ = 0.05 · 2−2

(c) FE mesh with h = δ = 0.05 · 2−1 (d) FE mesh with h = δ = 0.05 · 2−2
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Numerical Examples
L2 estimate: verification of ‖u−Πε

K [uδ]u‖L2(Ω) = O(
√
ε+ δ)

(a) Medium u (b) Best L2 approximation

Error(δ) = ‖u−Πε
K [uδ]u‖L2(Ω) :

10−3 10−2

10−1.5

10−1

δ, ε = 10−8

E
rr

o
r(
δ)

medium
√
δ

Error(ε) = ‖uδ −Πε
K [uδ]uδ‖L2(Ω) :

10−8 10−6 10−4 10−2 100

10−8

10−6

10−4

10−2

ε, δ = 0.05 · 2−6

E
rr

o
r(
ε)

medium
ε
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Polygonal map of Switzerland

GrisonsBern

St. Gallen

(a) Polygonal Switzerland uCH (b) 3D-view of ϕ5

(c) ϕ2 (d) ϕ5 (e) ϕ15
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Polygonal map of Switzerland

Given the map of Switzerland in a polygonal form such that

uCH =
26∑
k=1

αkχAk

where each Ak (may) represents a single Canton. Compute the first 26
eigenfunctions of Lε[uCH].

=⇒ we are able to project each Canton into span(ϕk)26
k=1:

(a) Canton of Bern (b) Canton of Grisons (c) Canton of St. Gallen

GrisonsBern

St. Gallen
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Marmousi model [Martin, Wiley, Marfurt, 2006]

(a) The Marmousi model

(b) ϕ0 with erel ≈ 12.89 %

(c) AS projection with K = 100 and erel ≈ 3.8 %
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Adaptive Spectral Inversion

Goal: find u∗ ∈ arg minv J (v)

For simplicity u = 0 near ∂Ω ( =⇒ ϕ
(n)
0 = 0 ∀n)

1. Choose initial search space Ψ(1) = span{ψ(1)
1 , . . . , ψ

(1)
K1
}

2. For n ≥ 1
I Solve:

u(n) ∈ arg min
v∈Ψ(n)

J (v)

I Compute: the first eigenfunctions

ϕ
(n+1)
1 , . . . , ϕ

(n+1)
Kn

of Lε[u(n)]

I Merge: compute an orthonormal basis Φ(n+1) of

span
{
ϕ

(n+1)
1 , . . . , ϕ

(n+1)
Kn

, ψ
(n)
1 , . . . , ψ

(n)
Kn

}
I Reduce: new basis/search space Ψ(n+1) ⊂ Φ(n+1) such that

proj
Ψ(n+1)

u(n) ≈ u(n)

3. End
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Numerical Examples
Adaptive spectral inversion for the wave equation in time domain with
absorbing boundary conditions.

Parameter settings:

I u discretized with standard P1 finite elements
I y` discretized with P2

b = P2 ⊕ [b] FE, where b is the bubble function to
ensure mass lumping

I Synthetic data computed on a different 30 % finer mesh
=⇒ NO inverse crime

I 20 % noise added to exact observations (on the boundary)
I Ricker wavelet with central frequency ν = 5 [Hz] as sources f`
I Ns = 32 evenly distributed sources near the boundary
I SAA (sample average approximation) approach with only one single “super

shot” [Haber, Chung, Herrman, 2012] =⇒ computational cost reduced
by nearly 1/32

I About 50 BFGS iterations per optimization step
I Stop when the discrepancy principle is satisfied: given noisy data yobs with
‖ytrue − yobs‖ ≤ η then stop in iteration n∗ when

‖y(un∗)− y
obs‖ ≤ τη, τ > 1.
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Solution to the forward problem

(a) solution at time t = 0.7 (b) solution at time t = 0.9

(c) solution at time t = 1.1 (d) solution at time t = 1.2
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Two discs

(a) utrue

(b) u∗, erel ≈ 2.07 % (c) ΠεK∗ [u∗]utrue

(d) ψ(∗)
1 (e) ψ(∗)

2
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Two discs
Number of basis functions:

2 6 10 14 18 22
0

5

10

15

20

25

30

35

40

n

K
# basis functions

(reduced) misfit:

0 2 4 6 8 10 12 14 16 18 20 22

8.2 · 10−5

8.4 · 10−5

8.6 · 10−5

8.8 · 10−5

9 · 10−5

n

J
(u
)

misfit

Snapshots of the AS iterates:

(a) u(1) (b) u(5)

(c) u(15) (d) u∗ = u(22)
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Three inclusions

(a) utrue

(b) u∗, erel ≈ 2.96 % (c) ΠεK∗ [u∗]utrue

(d) ψ(∗)
1 (e) ψ(∗)

2 (f) ψ(∗)
3
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Three inclusions
Number of basis functions:

2 6 10 14 18
0

20

40

60

80

n

K
# basis functions

(reduced) misfit:

0 2 4 6 8 10 12 14 16 18

8.2 · 10−5

8.6 · 10−5

9 · 10−5

9.4 · 10−5

n

J(
u)

misfit

Snapshots of the AS iterates:

(a) u(1) (b) u(5)

(c) u(10) (d) u∗ = u(18)
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Subsalt FWI: Pluto 1.5 model1 (Helmholtz Equation / frequency stepping):

Medium Best L2 approx. in ϕ0 + ΦK , with K = 100

Initial guess (borehole data at x = xE) ASI solution (surface data, 20% noise)

Misfit L2 error Frequency Number of basis functions
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uh (P 1-FE), yh (P 3-FE), 351’360 elements, (Baffet, G., Tang, Inv. Probl. 37, 2021).

1http://epos-eu.cz/ssc/software/sw3d/data/plu/plu.htm
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Concluding remarks
I Adaptive spectral inversion/decomposition

I efficient way to represent piecewise constant media
(K inclusions → K eigenfunctions)

I much smaller number of control variables K
I efficient alternative to standard Tikhonov regularization
I robust to missing data or added noise

I Extra cost
I ϕ0: solve elliptic (coercive) PDE at each basis update
I ϕk: compute the first K eigenfunctions (Lanczos) of elliptic (coercive)

operator
I Extensions

I applies to multi-parameter inversion, too
I Connection to (nonlinear) spectral decomposition in imaging (Gilboa et al.)
I Adaptive spectral representation independent of model problem (Helmholtz,

wave equation), i.e. useful for other inverse problems, too

Thank you for your attention!
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