Time-harmonic electromagnetic waves in anisotropic media

Patrick Ciarlet ${ }^{\dagger}$
with D. Chicaud ${ }^{\dagger}$, A. Modave ${ }^{\dagger}$
${ }^{\dagger}$ POEMS, ENSTA Paris, Institut Polytechnique de Paris, France

Outline

- Introduction/Motivation
- The model and its well-posedness
- A priori regularity of the fields
- Discretization and error estimates
- Numerical illustrations
- Conclusion and perspectives

Outline

- Introduction/Motivation
- The model and its well-posedness
- A priori regularity of the fields
- Discretization and error estimates
- Numerical illustrations
- Conclusion and perspectives

Introduction/Motivation

- A starting point:
- Study of electromagnetic wave propagation in plasmas, a popular model in plasma physics [Stix'92].
- Time-harmonic model, rigorously derived and studied mathematically in [PhD-Hattori'14], [Back-Hattori-Labrunie-Roche-Bertrand'15].

Introduction/Motivation

- A starting point:
- Study of electromagnetic wave propagation in plasmas, a popular model in plasma physics [Stix'92].
- Time-harmonic model, rigorously derived and studied mathematically in [PhD-Hattori'14], [Back-Hattori-Labrunie-Roche-Bertrand'15].
- The model:
- Set in an open, connected, bounded subset Ω of \mathbb{R}^{3} with Lipschitz-continuous boundary $\partial \Omega$ (Ω is a domain); \boldsymbol{n} denotes the unit outward normal to $\partial \Omega$.
- pulsation $\omega>0$ is given.

Introduction/Motivation

- A starting point:
- Study of electromagnetic wave propagation in plasmas, a popular model in plasma physics [Stix'92].
- Time-harmonic model, rigorously derived and studied mathematically in [PhD-Hattori'14], [Back-Hattori-Labrunie-Roche-Bertrand'15].
- The model:
- Find $\boldsymbol{E} \in \boldsymbol{H}(\operatorname{curl} ; \Omega):=\left\{\boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega) \mid \operatorname{curl} \boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega)\right\}$ governed by:
- $\operatorname{curl} \operatorname{curl} \boldsymbol{E}-\frac{\omega^{2}}{c^{2}} \underline{\underline{K}} \boldsymbol{E}=0$ in Ω, where

$$
\underline{\underline{\boldsymbol{K}}}(\boldsymbol{x})=\left(\begin{array}{ccc}
S(\boldsymbol{x}) & -i D(\boldsymbol{x}) & 0 \\
i D(\boldsymbol{x}) & S(\boldsymbol{x}) & 0 \\
0 & 0 & P(\boldsymbol{x})
\end{array}\right)
$$

is the anisotropic plasma response tensor ($S, D, P \mathbb{C}$-valued coefficients);

- a boundary condition on $\partial \Omega$ (with non-zero data): value of $\boldsymbol{E} \times \boldsymbol{n}_{\mid \partial \Omega}$, of $\operatorname{curl} \boldsymbol{E} \times \boldsymbol{n}_{\mid \partial \Omega}$, or of $\boldsymbol{E} \times \boldsymbol{n}_{\mid \Gamma}$ and $\operatorname{curl} \boldsymbol{E} \times \boldsymbol{n}_{\mid \partial \Omega \backslash \Gamma}$, is given.

Introduction/Motivation

- Key properties of the anisotropic plasma response tensor:
- $\underline{\underline{K}}$ is a normal, non-hermitian, matrix field of $\underline{\underline{L}}^{\infty}(\Omega)$;
- $\underline{\underline{K}}$ fulfills an ellipticity condition:

$$
\exists \eta>0, \forall \boldsymbol{z} \in \mathbb{C}^{3}, \eta|\boldsymbol{z}|^{2} \leq \Im\left[\boldsymbol{z}^{*} \underline{\underline{\boldsymbol{K}} \boldsymbol{z}}\right] \quad \text { ae in } \Omega .
$$

Introduction/Motivation

- Key properties of the anisotropic plasma response tensor:
- $\underline{\underline{K}}$ is a normal, non-hermitian, matrix field of $\underline{\underline{L}}^{\infty}(\Omega)$;
- $\underline{\underline{K}}$ fulfills an ellipticity condition:

$$
\exists \eta>0, \forall \boldsymbol{z} \in \mathbb{C}^{3}, \eta|\boldsymbol{z}|^{2} \leq \Im\left[\boldsymbol{z}^{*} \underline{\underline{\boldsymbol{K}} \boldsymbol{z}}\right] \quad \text { ae in } \Omega
$$

- Main results from [PhD-Hattori'14], [Back-Hattori-Labrunie-Roche-Bertrand'15]:
- the model, expressed variationally, involves a sesquilinear form that is automatically coercive: hence it is well-posed.
- Plain, mixed and augmented variational formulations are analyzed.

Introduction/Motivation

- Key properties of the anisotropic plasma response tensor:
- $\underline{\underline{\boldsymbol{K}}}$ is a normal, non-hermitian, matrix field of $\underline{\underline{L}}^{\infty}(\Omega)$;
- $\underline{\underline{K}}$ fulfills an ellipticity condition:

$$
\exists \eta>0, \forall \boldsymbol{z} \in \mathbb{C}^{3}, \eta|\boldsymbol{z}|^{2} \leq \Im\left[\boldsymbol{z}^{*} \underline{\underline{\boldsymbol{K}} \boldsymbol{z}}\right] \quad \text { ae in } \Omega .
$$

- Main results from [PhD-Hattori'14], [Back-Hattori-Labrunie-Roche-Bertrand'15]:
- the model, expressed variationally, involves a sesquilinear form that is automatically coercive: hence it is well-posed.
- Plain, mixed and augmented variational formulations are analyzed.
- Discretization is achieved with the help of the piecewise \boldsymbol{H}^{1}-conforming Finite Element Method (vector-valued Lagrange FE), together with a Fourier expansion (Ω is a torus).
- A Domain Decomposition Method is proposed.
- No numerical analysis is provided.

Introduction/Motivation

- Our goals and assumptions:
- Study a time-harmonic electromagnetic wave propagation model with $\underline{\underline{\boldsymbol{L}}}^{\infty}$, anisotropic magnetic permeability $\underline{\underline{\mu}}$ and electric permittivity $\underline{\underline{\varepsilon}}$.
- Assume a "generalized" ellipticity condition for $\underline{\underline{\boldsymbol{\xi}}} \in\{\underline{\underline{\boldsymbol{\varepsilon}}}, \underline{\underline{\boldsymbol{\mu}}}\}$:

$$
\text { (Ell) } \quad \exists \theta_{\xi} \in \mathbb{R}, \exists \xi_{-}>0, \forall \boldsymbol{z} \in \mathbb{C}^{3}, \xi_{-}|\boldsymbol{z}|^{2} \leq \Re\left[e^{i \theta_{\xi}} \cdot \boldsymbol{z}^{*} \underline{\underline{\boldsymbol{\xi}} \boldsymbol{z}}\right] \quad \text { ae in } \Omega
$$

- Dirichlet, Neumann or Robin boundary condition on $\partial \Omega$.

Introduction/Motivation

- Our goals and assumptions:
- Study a time-harmonic electromagnetic wave propagation model with $\underline{\underline{\boldsymbol{L}}}^{\infty}$, anisotropic magnetic permeability $\underline{\underline{\mu}}$ and electric permittivity $\underline{\underline{\underline{\varepsilon}}}$.
- Assume a "generalized" ellipticity condition for $\underline{\underline{\boldsymbol{\xi}}} \in\{\underline{\underline{\boldsymbol{\varepsilon}}}, \underline{\underline{\boldsymbol{\mu}}}\}$:

$$
\text { (Ell) } \quad \exists \theta_{\xi} \in \mathbb{R}, \exists \xi_{-}>0, \forall \boldsymbol{z} \in \mathbb{C}^{3}, \xi_{-}|\boldsymbol{z}|^{2} \leq \Re\left[e^{i \theta_{\xi}} \cdot \boldsymbol{z}^{*} \underline{\underline{\boldsymbol{\xi}} \boldsymbol{z}}\right] \quad \text { ae in } \Omega
$$

- Dirichlet, Neumann or Robin boundary condition on $\partial \Omega$.
- Main results [Chicaud-PC-Modave'21], [PhD-Chicaud'2x]:
- the model, expressed variationally, enters Fredholm alternative (coerciveness does not always hold) ;
- derivation of the a priori regularity of the field \boldsymbol{E} and of its curl;
- discretization with the help of the \boldsymbol{H} (curl)-conforming Finite Element Method;
- numerical analysis.

Introduction/Motivation

- Our goals and assumptions:
- Study a time-harmonic electromagnetic wave propagation model with $\underline{\underline{\boldsymbol{L}}}^{\infty}$, anisotropic magnetic permeability $\underline{\underline{\mu}}$ and electric permittivity $\underline{\underline{\varepsilon}}$.
- Assume a "generalized" ellipticity condition for $\underline{\underline{\boldsymbol{\xi}}} \in\{\underline{\underline{\boldsymbol{\varepsilon}}}, \underline{\underline{\mu}}\}$:

$$
\text { (Ell) } \quad \exists \theta_{\xi} \in \mathbb{R}, \exists \xi_{-}>0, \forall \boldsymbol{z} \in \mathbb{C}^{3}, \xi_{-}|\boldsymbol{z}|^{2} \leq \Re\left[e^{i \theta_{\xi}} \cdot \boldsymbol{z}^{*} \underline{\underline{\boldsymbol{\xi}} \boldsymbol{z}}\right] \quad \text { ae in } \Omega
$$

- Dirichlet, Neumann or Robin boundary condition on $\partial \Omega$.
- Some references on these issues:
- "Useful" monographs [Monk'03], [Costabel-Dauge-Nicaise'10], [Roach-Stratis-Yannacopoulos'13], [Assous-PC-Labrunie'18].

Introduction/Motivation

- Our goals and assumptions:
- Study a time-harmonic electromagnetic wave propagation model with $\underline{\underline{\boldsymbol{L}}}^{\infty}$, anisotropic magnetic permeability $\underline{\underline{\mu}}$ and electric permittivity $\underline{\underline{\underline{\varepsilon}}}$.
- Assume a "generalized" ellipticity condition for $\underline{\underline{\boldsymbol{\xi}}} \in\{\underline{\underline{\boldsymbol{\varepsilon}}}, \underline{\underline{\boldsymbol{\mu}}}\}$:

$$
\text { (Ell) } \quad \exists \theta_{\xi} \in \mathbb{R}, \exists \xi_{-}>0, \forall \boldsymbol{z} \in \mathbb{C}^{3}, \xi_{-}|\boldsymbol{z}|^{2} \leq \Re\left[e^{i \theta_{\xi}} \cdot \boldsymbol{z}^{*} \underline{\underline{\boldsymbol{\xi}} \boldsymbol{z}}\right] \quad \text { ae in } \Omega
$$

- Dirichlet, Neumann or Robin boundary condition on $\partial \Omega$.
- Some references on these issues:
- On the regularity results:

』 in the $\left(\boldsymbol{P} \boldsymbol{H}^{s}(\Omega)\right)_{s>0}$ scale: assuming piecewise smooth, elliptic, scalar fields/hermitian tensors [Costabel-Dauge-Nicaise'99], [Jochmann'99], [Bonito-Guermond-Luddens'13], [PC'20];

- in the $\left(\boldsymbol{L}^{r}(\Omega)\right)_{r>1}$ scale: assuming $\underline{\underline{L}}^{\infty}$, elliptic, perturbation of hermitian tensors [Xiang'20];
- in the $\left(\mathcal{C}^{0, \alpha}(\bar{\Omega})\right)_{\alpha>0}$ scale: assuming (Hölder-)continuous, elliptic tensors [Alberti-Capdeboscq'14], [Alberti'18], [Tsering-xiao-Wang'20].

Outline

- Introduction/Motivation
- The model and its well-posedness
- A priori regularity of the fields
- Discretization and error estimates
- Numerical illustrations
- Conclusion and perspectives

Time-harmonic Maxwell equations

- Ω is a domain; $\omega>0$ is the pulsation.
- Given volume data f and surface data g, solve:

$$
\begin{cases}\text { Find } \boldsymbol{E} \in \boldsymbol{H}(\operatorname{curl} ; \Omega) \text { s.t. } & \\ \operatorname{curl}\left(\underline{\underline{\boldsymbol{\mu}}}^{-1} \operatorname{curl} \boldsymbol{E}\right)-\omega^{2} \underline{\underline{\varepsilon}} \boldsymbol{E}=\boldsymbol{f} & \text { in } \Omega ; \\ \boldsymbol{E} \times \boldsymbol{n}=\boldsymbol{g} & \text { on } \partial \Omega .\end{cases}
$$

[Dirichlet boundary condition from now on.]

Time-harmonic Maxwell equations

- Ω is a domain; $\omega>0$ is the pulsation.
- Given volume data f and surface data g, solve:

$$
\begin{cases}\text { Find } \boldsymbol{E} \in \boldsymbol{H}(\operatorname{curl} ; \Omega) \text { s.t. } & \\ \operatorname{curl}\left(\underline{\underline{\boldsymbol{\mu}}}^{-1} \operatorname{curl} \boldsymbol{E}\right)-\omega^{2} \underline{\underline{\varepsilon}} \boldsymbol{E}=\boldsymbol{f} & \text { in } \Omega ; \\ \boldsymbol{E} \times \boldsymbol{n}=\boldsymbol{g} & \text { on } \partial \Omega .\end{cases}
$$

[Dirichlet boundary condition from now on.]

- The tensors $\underline{\underline{\boldsymbol{\xi}}} \in\{\underline{\underline{\boldsymbol{\varepsilon}}}, \underline{\underline{\boldsymbol{\mu}}}\}$ are elliptic (Ell), and they belong to $\underline{\underline{\boldsymbol{L}}}^{\infty}(\Omega)$.
- Volume data: $\boldsymbol{f} \in \boldsymbol{L}^{2}(\Omega)$.
- Surface data: $\boldsymbol{g}=\boldsymbol{E}_{d} \times \boldsymbol{n}_{\mid \partial \Omega}$, with $\boldsymbol{E}_{d} \in \boldsymbol{H}(\operatorname{curl} ; \Omega)$.

Helmholtz decompositions (1)

- Define the function spaces

$$
\begin{aligned}
\boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega) & :=\left\{\boldsymbol{v} \in \boldsymbol{H}(\operatorname{curl} ; \Omega) \mid \boldsymbol{v} \times \boldsymbol{n}_{\mid \partial \Omega}=0\right\}, \\
\boldsymbol{H}(\operatorname{div} \underline{\underline{\boldsymbol{\xi}}} ; \Omega) & :=\left\{\boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega) \mid \underline{\underline{\boldsymbol{\xi}} \boldsymbol{v} \in \boldsymbol{H}(\operatorname{div} ; \Omega)\},}\right. \\
\boldsymbol{H}(\operatorname{div} \underline{\underline{\boldsymbol{\xi}}} ; \Omega) & :=\{\boldsymbol{v} \in \boldsymbol{H}(\operatorname{div} \underline{\underline{\boldsymbol{\xi}} ; \Omega) \mid \operatorname{div} \underline{\underline{\boldsymbol{\xi}} \boldsymbol{v}}=0\},} \\
\boldsymbol{K}_{N}(\underline{\underline{\boldsymbol{\xi}}} ; \Omega) & :=\boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) \cap \boldsymbol{H}(\operatorname{div} \underline{\underline{\boldsymbol{\xi}}} ; \Omega) .
\end{aligned}
$$

Helmholtz decompositions (1)

- Define the function spaces

$$
\begin{aligned}
\boldsymbol{H}_{0}(\text { curl } ; \Omega) & :=\left\{\boldsymbol{v} \in \boldsymbol{H}(\mathbf{c u r l} ; \Omega) \mid \boldsymbol{v} \times \boldsymbol{n}_{\mid \partial \Omega}=0\right\}, \\
\boldsymbol{H}(\operatorname{div} \underline{\underline{\boldsymbol{\xi}}} ; \Omega) & :=\left\{\boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega) \mid \underline{\underline{\boldsymbol{\xi}} \boldsymbol{v} \in \boldsymbol{H}(\operatorname{div} ; \Omega)\}}\right. \\
\boldsymbol{H}(\operatorname{div} \underline{\underline{\boldsymbol{\xi}}} ; \Omega) & :=\{\boldsymbol{v} \in \boldsymbol{H}(\operatorname{div} \underline{\underline{\boldsymbol{\xi}} ; \Omega) \mid \operatorname{div} \underline{\underline{\boldsymbol{\xi}}} \boldsymbol{v}=0\},} \\
\boldsymbol{K}_{N}(\underline{\underline{\boldsymbol{\xi}}} ; \Omega) & :=\boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) \cap \boldsymbol{H}(\operatorname{div} \underline{\underline{\boldsymbol{\xi}}} 0 \Omega) .
\end{aligned}
$$

- Helmholtz decompositions:

$$
\boldsymbol{L}^{2}(\Omega)=\nabla\left[H_{0}^{1}(\Omega)\right] \oplus \boldsymbol{H}(\operatorname{div} \underline{\underline{\boldsymbol{\xi}}} 0 ; \Omega) \quad \text { and } \quad \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega)=\nabla\left[H_{0}^{1}(\Omega)\right] \oplus \boldsymbol{K}_{N}(\underline{\underline{\boldsymbol{\xi}}} ; \Omega) .
$$

NB. Notion of orthogonality does not apply when $\underline{\underline{\xi}}$ is non-hermitian.

Helmholtz decompositions (1)

- Define the function spaces

$$
\begin{aligned}
\boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) & :=\left\{\boldsymbol{v} \in \boldsymbol{H}(\mathbf{c u r l} ; \Omega) \mid \boldsymbol{v} \times \boldsymbol{n}_{\mid \partial \Omega}=0\right\}, \\
\boldsymbol{H}(\operatorname{div} \underline{\underline{\boldsymbol{\xi}}} ; \Omega) & :=\left\{\boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega) \mid \underline{\underline{\boldsymbol{\xi}}} \boldsymbol{v} \in \boldsymbol{H}(\operatorname{div} ; \Omega)\right\}, \\
\boldsymbol{H}(\operatorname{div} \underline{\underline{\boldsymbol{\xi}}} ; \Omega) & :=\{\boldsymbol{v} \in \boldsymbol{H}(\operatorname{div} \underline{\underline{\boldsymbol{\xi}}} ; \Omega) \mid \operatorname{div} \underline{\underline{\boldsymbol{\xi}} \boldsymbol{v}}=0\}, \\
\left.\boldsymbol{K}_{N} \underline{\underline{\boldsymbol{\xi}}} ; \Omega\right) & :=\boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) \cap \boldsymbol{H}(\operatorname{div} \underline{\underline{\boldsymbol{\xi}}} 0 ; \Omega) .
\end{aligned}
$$

- Helmholtz decompositions:

$$
\boldsymbol{L}^{2}(\Omega)=\nabla\left[H_{0}^{1}(\Omega)\right] \oplus \boldsymbol{H}(\operatorname{div} \underline{\underline{\boldsymbol{\xi}}} 0 ; \Omega) \quad \text { and } \quad \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega)=\nabla\left[H_{0}^{1}(\Omega)\right] \oplus \boldsymbol{K}_{N}(\underline{\underline{\boldsymbol{\xi}}} ; \Omega) .
$$

NB. Notion of orthogonality does not apply when $\underline{\underline{\xi}}$ is non-hermitian.

- To solve our model, we rely on the second Helmholtz decompostion.

Helmholtz decompositions (2)

- First Helmholtz decomposition $\boldsymbol{L}^{2}(\Omega)=\nabla\left[H_{0}^{1}(\Omega)\right] \oplus \boldsymbol{H}(\operatorname{div} \underline{\underline{\boldsymbol{\xi}}} ; \Omega)$.

Helmholtz decompositions (2)

- First Helmholtz decomposition $\boldsymbol{L}^{2}(\Omega)=\nabla\left[H_{0}^{1}(\Omega)\right] \oplus \boldsymbol{H}(\operatorname{div} \underline{\underline{\boldsymbol{\xi}} 0} ; \Omega)$. Idea of proof: Let $\boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega)$.
- The Dirichlet problem

$$
\left(P_{D i r}\right)\left\{\begin{array}{l}
\text { Find } p \in H_{0}^{1}(\Omega) \text { such that } \\
(\underline{\underline{\boldsymbol{\xi}}} \nabla p \mid \nabla q)=(\underline{\underline{\boldsymbol{\xi}}} \boldsymbol{v} \mid \nabla q), \quad \forall q \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

is well-posed, thanks to $(E l l): \exists!p$, with $\|p\|_{H^{1}(\Omega)} \lesssim\|\boldsymbol{v}\|_{L^{2}(\Omega)}$.

Helmholtz decompositions (2)

- First Helmholtz decomposition $\boldsymbol{L}^{2}(\Omega)=\nabla\left[H_{0}^{1}(\Omega)\right] \oplus \boldsymbol{H}(\operatorname{div} \underline{\underline{\boldsymbol{\xi}} 0} ; \Omega)$. Idea of proof. Let $\boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega)$.
- The Dirichlet problem

$$
\left(P_{D i r}\right)\left\{\begin{array}{l}
\text { Find } p \in H_{0}^{1}(\Omega) \text { such that } \\
(\underline{\underline{\boldsymbol{\xi}}} \nabla p \mid \nabla q)=(\underline{\underline{\boldsymbol{\xi}}} \boldsymbol{v} \mid \nabla q), \quad \forall q \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

is well-posed, thanks to $(E l l): \exists!p$, with $\|p\|_{H^{1}(\Omega)} \lesssim\|\boldsymbol{v}\|_{L^{2}(\Omega)}$.

- Let $\boldsymbol{v}_{T}=\boldsymbol{v}-\nabla p \in \boldsymbol{L}^{2}(\Omega):\left\|\boldsymbol{v}_{T}\right\|_{L^{2}(\Omega)} \lesssim\|\boldsymbol{v}\|_{L^{2}(\Omega)}$ and

$$
\left(\underline{\underline{\boldsymbol{\xi}}} \boldsymbol{v}_{T} \mid \nabla q\right)=0, \quad \forall q \in H_{0}^{1}(\Omega)
$$

ie. $\boldsymbol{v}_{T} \in \boldsymbol{H}(\operatorname{div} \underline{\underline{\xi}} 0 ; \Omega)$.

- The sum is direct because ($P_{D i r}$) is well-posed.

Helmholtz decompositions (2)

- First Helmholtz decomposition $\boldsymbol{L}^{2}(\Omega)=\nabla\left[H_{0}^{1}(\Omega)\right] \oplus \boldsymbol{H}(\operatorname{div} \underline{\underline{\boldsymbol{\xi}} 0} ; \Omega)$.
- Second Helmholtz decomposition $\boldsymbol{H}_{0}(\boldsymbol{\operatorname { c u r l }} ; \Omega)=\nabla\left[H_{0}^{1}(\Omega)\right] \oplus \boldsymbol{K}_{N}(\underline{\underline{\boldsymbol{\xi}}} ; \Omega)$ follows as a straightforward corollary.

Helmholtz decompositions (2)

- First Helmholtz decomposition $\boldsymbol{L}^{2}(\Omega)=\nabla\left[H_{0}^{1}(\Omega)\right] \oplus \boldsymbol{H}(\operatorname{div} \underline{\underline{\boldsymbol{\xi}} 0} ; \Omega)$.
- Second Helmholtz decomposition $\boldsymbol{H}_{0}(\boldsymbol{\operatorname { c u r l }} ; \Omega)=\nabla\left[H_{0}^{1}(\Omega)\right] \oplus \boldsymbol{K}_{N}(\underline{\underline{\boldsymbol{\xi}}} ; \Omega)$ follows as a straightforward corollary.
- The embedding of $\boldsymbol{K}_{N}(\underline{\underline{\boldsymbol{\xi}}} ; \Omega)$ into $\boldsymbol{L}^{2}(\Omega)$ is compact.
(One has a similar property for the larger function space $\boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) \cap \boldsymbol{H}(\operatorname{div} \underline{\underline{\boldsymbol{\xi}} ; \Omega)}$.) Proof is "classical", cf. [Weber'80].

Well-posedness (1)

- Recall our model:

$$
\begin{cases}\text { Find } \boldsymbol{E} \in \boldsymbol{H}(\operatorname{curl} ; \Omega) \text { s.t. } & \\ \operatorname{curl}\left(\underline{\underline{\boldsymbol{\mu}}}^{-1} \operatorname{curl} \boldsymbol{E}\right)-\omega^{2} \underline{\underline{\boldsymbol{\varepsilon}}} \boldsymbol{E}=\boldsymbol{f} & \text { in } \Omega ; \\ \boldsymbol{E} \times \boldsymbol{n}=\boldsymbol{g} & \text { on } \partial \Omega .\end{cases}
$$

Well-posedness (1)

- Recall our model:

$$
\begin{cases}\text { Find } \boldsymbol{E} \in \boldsymbol{H}(\operatorname{curl} ; \Omega) \text { s.t. } & \\ \boldsymbol{\operatorname { c u r l } (\underline { \underline { \mu } } ^ { - 1 } \operatorname { c u r l } \boldsymbol { E }) - \omega ^ { 2 } \underline { \underline { \varepsilon } } \boldsymbol { E } = \boldsymbol { f }} & \text { in } \Omega ; \\ \boldsymbol{E} \times \boldsymbol{n}=\boldsymbol{g} & \text { on } \partial \Omega .\end{cases}
$$

- An equivalent variational formulation reads

$$
(F V E)\left\{\begin{array}{l}
\text { Find } \boldsymbol{E} \in \boldsymbol{H}(\operatorname{curl} ; \Omega) \text { such that } \\
\left(\underline{\underline{\boldsymbol{\mu}}}^{-1} \operatorname{curl} \boldsymbol{E} \mid \operatorname{curl} \boldsymbol{F}\right)-\omega^{2}(\underline{\underline{\varepsilon}} \boldsymbol{E} \mid \boldsymbol{F})=\ell_{\mathrm{D}}(\boldsymbol{F}), \forall \boldsymbol{F} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega), \\
\boldsymbol{E} \times \boldsymbol{n}=\boldsymbol{g} \text { on } \partial \Omega,
\end{array}\right.
$$

where $\ell_{\mathrm{D}}: \boldsymbol{F} \mapsto(\boldsymbol{f} \mid \boldsymbol{F})$ belongs to $\left(\boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega)\right)^{\prime}$.

Well-posedness (1)

- Recall our model:

$$
\begin{cases}\text { Find } \boldsymbol{E} \in \boldsymbol{H}(\operatorname{curl} ; \Omega) \text { s.t. } & \\ \operatorname{curl}\left(\underline{\underline{\boldsymbol{\mu}}}^{-1} \operatorname{curl} \boldsymbol{E}\right)-\omega^{2} \underline{\underline{\varepsilon}} \boldsymbol{E}=\boldsymbol{f} & \text { in } \Omega ; \\ \boldsymbol{E} \times \boldsymbol{n}=\boldsymbol{g} & \text { on } \partial \Omega .\end{cases}
$$

- Introduce the new unknown $\boldsymbol{E}_{0}:=\boldsymbol{E}-\boldsymbol{E}_{d} \in \boldsymbol{H}_{0}(\boldsymbol{c u r l} ; \Omega)$, which is governed by

$$
\left(F V E_{0}\right) \quad\left\{\begin{array}{l}
\text { Find } \boldsymbol{E}_{0} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) \text { such that } \\
\left(\underline{\underline{\boldsymbol{\mu}}}^{-1} \operatorname{curl} \boldsymbol{E}_{0} \mid \operatorname{curl} \boldsymbol{F}\right)-\omega^{2}\left(\underline{\underline{\varepsilon}} \boldsymbol{E}_{0} \mid \boldsymbol{F}\right)=\ell_{\mathrm{D}, 0}(\boldsymbol{F}), \forall \boldsymbol{F} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega),
\end{array}\right.
$$

where $\ell_{\mathrm{D}, 0}: \boldsymbol{F} \mapsto\left(\boldsymbol{f}+\omega^{2} \underline{\underline{\varepsilon}} \boldsymbol{E}_{d} \mid \boldsymbol{F}\right)-\left(\underline{\underline{\boldsymbol{\mu}}}^{-1} \operatorname{curl} \boldsymbol{E}_{d} \mid \operatorname{curl} \boldsymbol{F}\right)$ belongs to $\left(\boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega)\right)^{\prime}$.

Well-posedness (1)

- Recall our model:

$$
\begin{cases}\text { Find } \boldsymbol{E} \in \boldsymbol{H}(\operatorname{curl} ; \Omega) \text { s.t. } & \\ \operatorname{curl}\left(\underline{\underline{\boldsymbol{\mu}}}^{-1} \operatorname{curl} \boldsymbol{E}\right)-\omega^{2} \underline{\underline{\varepsilon}} \boldsymbol{E}=\boldsymbol{f} & \text { in } \Omega ; \\ \boldsymbol{E} \times \boldsymbol{n}=\boldsymbol{g} & \text { on } \partial \Omega .\end{cases}
$$

- Using the second Helmholtz decomposition, split \boldsymbol{E}_{0} as $\boldsymbol{E}_{0}=\nabla p_{0}+\boldsymbol{k}_{0}$, where $p_{0} \in H_{0}^{1}(\Omega)$ and $\boldsymbol{k}_{0} \in \boldsymbol{K}_{N}(\underline{\underline{\boldsymbol{\varepsilon}}} ; \Omega)$ are respectively governed by
$\left(P_{D i r}^{E}\right) \quad\left\{\begin{array}{l}\text { Find } p_{0} \in H_{0}^{1}(\Omega) \text { such that } \\ -\omega^{2}\left(\underline{\underline{\varepsilon}} \nabla p_{0} \mid \nabla q\right)=\ell_{\mathrm{D}, 0}(\nabla q), \forall q \in H_{0}^{1}(\Omega),\end{array}\right.$
$\left(P_{K}^{E}\right)\left\{\begin{array}{l}\text { Find } \boldsymbol{k}_{0} \in \boldsymbol{K}_{N}(\underline{\underline{\boldsymbol{\varepsilon}}} ; \Omega) \text { such that } \\ \left(\underline{\underline{\boldsymbol{\mu}}}^{-1} \operatorname{curl} \boldsymbol{k}_{0} \mid \operatorname{curl} \boldsymbol{k}\right)-\omega^{2}\left(\underline{\underline{\boldsymbol{\varepsilon}}} \boldsymbol{k}_{0} \mid \boldsymbol{k}\right)=\omega^{2}\left(\underline{\underline{\varepsilon}} \nabla p_{0} \mid \boldsymbol{k}\right)+\ell_{\mathrm{D}, 0}(\boldsymbol{k}), \forall \boldsymbol{k} \in \boldsymbol{K}_{N}(\underline{\underline{\boldsymbol{\varepsilon}}} ; \Omega),\end{array}\right.$
with $\ell_{\mathrm{D}, 0}: \boldsymbol{F} \mapsto\left(\boldsymbol{f}+\omega^{2} \underline{\underline{\varepsilon}} \boldsymbol{E}_{d} \mid \boldsymbol{F}\right)-\left(\underline{\underline{\boldsymbol{\mu}}}^{-1} \operatorname{curl} \boldsymbol{E}_{d} \mid \operatorname{curl} \boldsymbol{F}\right)$.

Well-posedness (2)

- $\left(P_{D i r}^{E}\right)$ is well-posed, thanks to the ellipticity condition (Ell).

Well-posedness (2)

- $\left(P_{D i r}^{E}\right)$ is well-posed, thanks to the ellipticity condition (Ell).
- $\left(P_{K}^{E}\right)$ enters Fredholm alternative.

Well-posedness (2)

- $\left(P_{D i r}^{E}\right)$ is well-posed, thanks to the ellipticity condition (Ell).
- $\left(P_{K}^{E}\right)$ enters Fredholm alternative.
- So ($F V E_{0}$) and ($F V E$) also enter Fredholm alternative:
- either $\left(F V E_{0}\right)$ admits a unique solution \boldsymbol{E}_{0} in $\boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega)$, which depends continuously on the data f and \boldsymbol{E}_{d} :

$$
\left\|\boldsymbol{E}_{0}\right\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)} \lesssim\|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)}+\left\|\boldsymbol{E}_{d}\right\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)} ;
$$

- or, ($F V E_{0}$) has solutions if, and only if, \boldsymbol{f} and \boldsymbol{E}_{d} satisfy a finite number of compatibility conditions.
Moreover, each alternative occurs simultaneously for $\left(F V E_{0}\right)$ and ($F V E$).

Well-posedness (2)

- $\left(P_{D i r}^{E}\right)$ is well-posed, thanks to the ellipticity condition (Ell).
- $\left(P_{K}^{E}\right)$ enters Fredholm alternative.
- So $\left(F V E_{0}\right)$ and $(F V E)$ also enter Fredholm alternative:
- either $\left(F V E_{0}\right)$ admits a unique solution \boldsymbol{E}_{0} in $\boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega)$, which depends continuously on the data f and \boldsymbol{E}_{d} :

$$
\left\|\boldsymbol{E}_{0}\right\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)} \lesssim\|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)}+\left\|\boldsymbol{E}_{d}\right\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)} ;
$$

- or, ($F V E_{0}$) has solutions if, and only if, \boldsymbol{f} and \boldsymbol{E}_{d} satisfy a finite number of compatibility conditions.
Moreover, each alternative occurs simultaneously for $\left(F V E_{0}\right)$ and ($F V E$).
- For the rest of the talk we assume that the problems are well-posed, ie. existence, uniqueness and continuous dependence of the solution wrt the data.

Outline

- Introduction/Motivation
- The model and its well-posedness
- A priori regularity of the fields
- Discretization and error estimates
- Numerical illustrations
- Conclusion and perspectives

Extra-regularity of \boldsymbol{E}

- For $\boldsymbol{E}_{0} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega)$, two key ingredients...
- Regular-gradient splitting, see Lemma 2.4 [Hiptmair’02]:

In a domain Ω, for all \boldsymbol{u} in $\boldsymbol{H}_{0}(\operatorname{curl} ; \Omega)$, there exist $\boldsymbol{u}^{\text {reg in }} \boldsymbol{H}^{1}(\Omega)$ and ϕ in $H_{0}^{1}(\Omega)$, such that $\boldsymbol{u}=\boldsymbol{u}^{\mathrm{reg}}+\nabla \phi$ in Ω, with $\left\|\boldsymbol{u}^{\mathrm{reg}}\right\|_{\boldsymbol{H}^{1}(\Omega)}+\|\phi\|_{H^{1}(\Omega)} \lesssim\|\boldsymbol{u}\|_{\boldsymbol{H}(\mathbf{c u r l} ; \Omega)}$.

Extra-regularity of \boldsymbol{E}

- For $\boldsymbol{E}_{0} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega)$, two key ingredients...
- Regular-gradient splitting, see Lemma 2.4 [Hiptmair’02]: In a domain Ω, for all \boldsymbol{u} in $\boldsymbol{H}_{0}(\operatorname{curl} ; \Omega)$, there exist $\boldsymbol{u}^{\text {reg in }} \boldsymbol{H}^{1}(\Omega)$ and ϕ in $H_{0}^{1}(\Omega)$, such that $\boldsymbol{u}=\boldsymbol{u}^{\mathrm{reg}}+\nabla \phi$ in Ω, with $\left\|\boldsymbol{u}^{\mathrm{reg}}\right\|_{\boldsymbol{H}^{1}(\Omega)}+\|\phi\|_{H^{1}(\Omega)} \lesssim\|\boldsymbol{u}\|_{\boldsymbol{H}(\mathbf{c u r l} ; \Omega)}$.
- Shift theorem, see Thm 3.4.5 [Costabel-Dauge-Nicaise'10]: Assume that $\underline{\underline{\varepsilon}} \in \underline{\underline{C}}^{1}(\bar{\Omega})$ and that $\partial \Omega$ is of class \mathcal{C}^{2}.
Let ℓ in $\left(H_{0}^{1}(\Omega)\right)^{\prime}$, and p governed by the Dirichlet problem

$$
\left\{\begin{array}{l}
\text { Find } p \in H_{0}^{1}(\Omega) \text { such that } \\
(\underline{\underline{\varepsilon}} \nabla p \mid \nabla q)=\ell(q), \forall q \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

Then, for all $\sigma \in[0,1] \backslash\left\{\frac{1}{2}\right\}$:

$$
\begin{aligned}
& \ell \in\left(H_{0}^{1-\sigma}(\Omega)\right)^{\prime} \Longrightarrow p \in H^{\sigma+1}(\Omega) \\
& \exists C_{\sigma}>0, \forall \ell \in\left(H_{0}^{1-\sigma}(\Omega)\right)^{\prime},\|p\|_{H^{\sigma+1}(\Omega)} \leq C_{\sigma}\|\ell\|_{\left(H_{0}^{1-\sigma}(\Omega)\right)^{\prime}}
\end{aligned}
$$

Extra-regularity of \boldsymbol{E}

- For $\boldsymbol{E}_{0} \in \boldsymbol{H}_{0}(\operatorname{curl} ; \Omega)$, two key ingredients...
- Regular-gradient splitting, see Lemma 2.4 [Hiptmair'02]:

In a domain Ω, for all \boldsymbol{u} in $\boldsymbol{H}_{0}(\operatorname{curl} ; \Omega)$, there exist $\boldsymbol{u}^{\text {reg }}$ in $\boldsymbol{H}^{1}(\Omega)$ and ϕ in $H_{0}^{1}(\Omega)$, such that $\boldsymbol{u}=\boldsymbol{u}^{\text {reg }}+\nabla \phi$ in Ω, with $\left\|\boldsymbol{u}^{\text {reg }}\right\|_{\boldsymbol{H}^{1}(\Omega)}+\|\phi\|_{H^{1}(\Omega)} \lesssim\|\boldsymbol{u}\|_{\boldsymbol{H}(\mathbf{c u r l} ; \Omega)}$.

- Shift theorem, see Thm 3.4.5 [Costabel-Dauge-Nicaise'10]: Assume that $\underline{\underline{\varepsilon}} \in \underline{\underline{C}}^{1}(\bar{\Omega})$ and that $\partial \Omega$ is of class \mathcal{C}^{2}.
- Applying these results to \boldsymbol{E}_{0}, one concludes that:
if $\boldsymbol{f} \in \boldsymbol{L}^{2}(\Omega)$ is such that $\operatorname{div} \boldsymbol{f} \in H^{\mathrm{s}-1}(\Omega)$ with $\mathrm{s} \in[0,1] \backslash\left\{\frac{1}{2}\right\}$,
if $\boldsymbol{E}_{d} \in \boldsymbol{H}^{\mathrm{r}}(\Omega)$ with $\mathrm{r} \in[0,1] \backslash\left\{\frac{1}{2}\right\}$,
then

$$
\left\{\begin{array}{l}
\boldsymbol{E} \in \boldsymbol{H}^{\min (\mathrm{s}, \mathrm{r})}(\Omega) \text { and } \\
\|\boldsymbol{E}\|_{\boldsymbol{H}^{\min (\mathrm{s}, \mathrm{r})}(\Omega)} \lesssim\|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)}+\|\operatorname{div} \boldsymbol{f}\|_{H^{\mathrm{s}-1}(\Omega)}+\left\|\boldsymbol{E}_{d}\right\|_{\boldsymbol{H}^{\mathrm{r}}(\Omega)}+\left\|\mathbf{c u r l} \boldsymbol{E}_{d}\right\|_{\boldsymbol{L}^{2}(\Omega)} .
\end{array}\right.
$$

Extra-regularity of curl E

- $\underline{\underline{\boldsymbol{\mu}}}^{-1} \operatorname{curl} \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega)$ is such that $\operatorname{curl}\left(\underline{\underline{\boldsymbol{\mu}}}^{-1} \operatorname{curl} \boldsymbol{E}\right)=\boldsymbol{f}+\omega^{2} \underline{\underline{\varepsilon}} \boldsymbol{E} \in \boldsymbol{L}^{2}(\Omega)$:

$$
{\underline{\underline{\boldsymbol{\mu}^{-1}}} \operatorname{curl} \boldsymbol{E} \in \boldsymbol{H}(\operatorname{curl} ; \Omega) .}^{\text {. }}
$$

Extra-regularity of curl E

- For $\underline{\underline{\mu}}^{-1} \operatorname{curl} \boldsymbol{E} \in \boldsymbol{H}(\operatorname{curl} ; \Omega)$, again two key ingredients...
- Regular-gradient splitting of elements of $\boldsymbol{H}(\operatorname{curl} ; \Omega)$ in a domain Ω of the \mathfrak{A}-type, see Thm 3.6.7 [Assous-PC-Labrunie'18].
- Shift theorem, see Thm 3.4.5 [Costabel-Dauge-Nicaise'10], for the Neumann problem. One assumes that $\underline{\underline{\boldsymbol{\mu}}} \in \underline{\underline{C}}^{1}(\bar{\Omega})$ and again that $\partial \Omega$ is of class \mathcal{C}^{2}.

Extra-regularity of curl E

- For $\underline{\underline{\mu}}^{-1} \operatorname{curl} \boldsymbol{E} \in \boldsymbol{H}(\mathbf{c u r l} ; \Omega)$, again two key ingredients...
- Regular-gradient splitting of elements of $\boldsymbol{H}(\operatorname{curl} ; \Omega)$ in a domain Ω of the \mathfrak{A}-type, see Thm 3.6.7 [Assous-PC-Labrunie'18].
- Shift theorem, see Thm 3.4.5 [Costabel-Dauge-Nicaise'10], for the Neumann problem. One assumes that $\underline{\underline{\boldsymbol{\mu}}} \in \underline{\underline{\boldsymbol{C}}}^{1}(\bar{\Omega})$ and again that $\partial \Omega$ is of class \mathcal{C}^{2}.
- Applying these results to $\underline{\underline{\boldsymbol{\mu}}}^{-1} \operatorname{curl} \boldsymbol{E}$, one concludes that:
if $\operatorname{curl} \boldsymbol{E}_{d} \in \boldsymbol{H}^{\mathrm{r}^{\prime}}(\Omega)$ with $\mathrm{r}^{\prime} \in[0,1] \backslash\left\{\frac{1}{2}\right\}$, then

$$
\left\{\begin{array}{l}
\operatorname{curl} \boldsymbol{E} \in \boldsymbol{H}^{\mathrm{r}^{\prime}}(\Omega) \text { and } \\
\|\operatorname{curl} \boldsymbol{E}\|_{\boldsymbol{H}^{\mathrm{r}^{\prime}}(\Omega)} \lesssim\|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)}+\left\|\boldsymbol{E}_{d}\right\|_{\boldsymbol{L}^{2}(\Omega)}+\left\|\operatorname{curl} \boldsymbol{E}_{d}\right\|_{\boldsymbol{H}^{\mathrm{r}^{\prime}(\Omega)}} .
\end{array}\right.
$$

Extra-regularity of curl E

- For $\underline{\underline{\mu}}^{-1} \operatorname{curl} \boldsymbol{E} \in \boldsymbol{H}(\mathbf{c u r l} ; \Omega)$, again two key ingredients...
- Regular-gradient splitting of elements of $\boldsymbol{H}(\operatorname{curl} ; \Omega)$ in a domain Ω of the \mathfrak{A}-type, see Thm 3.6.7 [Assous-PC-Labrunie'18].
- Shift theorem, see Thm 3.4.5 [Costabel-Dauge-Nicaise'10], for the Neumann problem. One assumes that $\underline{\underline{\boldsymbol{\mu}}} \in \underline{\underline{\boldsymbol{C}}}^{1}(\bar{\Omega})$ and again that $\partial \Omega$ is of class \mathcal{C}^{2}.
- Applying these results to $\underline{\underline{\boldsymbol{\mu}}}^{-1} \operatorname{curl} \boldsymbol{E}$, one concludes that:
if $\operatorname{curl} \boldsymbol{E}_{d} \in \boldsymbol{H}^{\mathrm{r}^{\prime}}(\Omega)$ with $\mathrm{r}^{\prime} \in[0,1] \backslash\left\{\frac{1}{2}\right\}$,
then

$$
\left\{\begin{array}{l}
\operatorname{curl} \boldsymbol{E} \in \boldsymbol{H}^{\mathrm{r}^{\prime}}(\Omega) \text { and } \\
\|\operatorname{curl} \boldsymbol{E}\|_{\boldsymbol{H}^{\mathrm{r}^{\prime}}(\Omega)} \lesssim\|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)}+\left\|\boldsymbol{E}_{d}\right\|_{\boldsymbol{L}^{2}(\Omega)}+\left\|\operatorname{curl} \boldsymbol{E}_{d}\right\|_{\boldsymbol{H}^{\mathrm{r}^{\prime}(\Omega)}} .
\end{array}\right.
$$

NB. If Ω is a domain with boundary of class \mathcal{C}^{2}, it is automatically of the \mathfrak{A}-type.

Outline

- Introduction/Motivation
- The model and its well-posedness
- A priori regularity of the fields
- Discretization and error estimates
- Numerical illustrations
- Conclusion and perspectives

$\boldsymbol{H}(\operatorname{curl} ; \Omega)$-conforming discretization

- For the sake of simplicity, assume that Ω is a (Lipschitz) polyhedron.

$\boldsymbol{H}(\operatorname{curl} ; \Omega)$-conforming discretization

- For the sake of simplicity, assume that Ω is a (Lipschitz) polyhedron.
- Let $\left(\mathcal{T}_{h}\right)_{h>0}$ be a shape regular family of tetrahedral meshes of Ω.
- We choose the first family of edge finite elements for the discretization [Nédélec'80]: for $h>0$, and $K \in \mathcal{T}_{h}$, let $\mathcal{R}_{1}(K):=\left\{\boldsymbol{v} \in \boldsymbol{P}_{1}(K) \mid \boldsymbol{v}(\boldsymbol{x})=\boldsymbol{a}+\boldsymbol{b} \times \boldsymbol{x}, \boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^{3}\right\}$.

$\boldsymbol{H}(\operatorname{curl} ; \Omega)$-conforming discretization

- For the sake of simplicity, assume that Ω is a (Lipschitz) polyhedron.
- Let $\left(\mathcal{T}_{h}\right)_{h>0}$ be a shape regular family of tetrahedral meshes of Ω.
- We choose the first family of edge finite elements for the discretization [Nédélec'80]: for $h>0$, and $K \in \mathcal{T}_{h}$, let $\mathcal{R}_{1}(K):=\left\{\boldsymbol{v} \in \boldsymbol{P}_{1}(K) \mid \boldsymbol{v}(\boldsymbol{x})=\boldsymbol{a}+\boldsymbol{b} \times \boldsymbol{x}, \boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^{3}\right\}$.
- For $h>0$, introduce the discrete spaces

$$
\boldsymbol{V}_{h}:=\left\{\boldsymbol{v}_{h} \in \boldsymbol{H}(\operatorname{curl} ; \Omega) \mid \boldsymbol{v}_{h \mid K} \in \mathcal{R}_{1}(K), \forall K \in \mathcal{T}_{h}\right\}, \boldsymbol{V}_{h}^{0}:=\boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) \cap \boldsymbol{V}_{h} .
$$

$\boldsymbol{H}(\operatorname{curl} ; \Omega)$-conforming discretization

- For the sake of simplicity, assume that Ω is a (Lipschitz) polyhedron.
- Let $\left(\mathcal{T}_{h}\right)_{h>0}$ be a shape regular family of tetrahedral meshes of Ω.
- We choose the first family of edge finite elements for the discretization [Nédélec'80]: for $h>0$, and $K \in \mathcal{T}_{h}$, let $\mathcal{R}_{1}(K):=\left\{\boldsymbol{v} \in \boldsymbol{P}_{1}(K) \mid \boldsymbol{v}(\boldsymbol{x})=\boldsymbol{a}+\boldsymbol{b} \times \boldsymbol{x}, \boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^{3}\right\}$.
- For $h>0$, introduce the discrete spaces

$$
\boldsymbol{V}_{h}:=\left\{\boldsymbol{v}_{h} \in \boldsymbol{H}(\operatorname{curl} ; \Omega) \mid \boldsymbol{v}_{h \mid K} \in \mathcal{R}_{1}(K), \forall K \in \mathcal{T}_{h}\right\}, \boldsymbol{V}_{h}^{0}:=\boldsymbol{H}_{0}(\operatorname{curl} ; \Omega) \cap \boldsymbol{V}_{h} .
$$

- The discrete variational formulation reads

$$
\left(F V E_{h}\right) \quad\left\{\begin{array}{l}
\text { Find } \boldsymbol{E}_{h} \in \boldsymbol{V}_{h} \text { such that } \\
a_{\omega}\left(\boldsymbol{E}_{h}, \boldsymbol{F}_{h}\right)=\ell_{\mathrm{D}}\left(\boldsymbol{F}_{h}\right), \forall \boldsymbol{F}_{h} \in \boldsymbol{V}_{h}^{0}, \\
\boldsymbol{E}_{h} \times \boldsymbol{n}=\boldsymbol{g}_{h} \text { on } \partial \Omega
\end{array}\right.
$$

with the sesquilinear form $a_{\omega}:(\boldsymbol{u}, \boldsymbol{v}) \mapsto\left(\underline{\underline{\mu}}^{-1} \operatorname{curl} \boldsymbol{u} \mid \operatorname{curl} \boldsymbol{v}\right)-\omega^{2}(\underline{\underline{\varepsilon}} \boldsymbol{u} \mid \boldsymbol{v})$.

Error estimates

- If the form a_{ω} is coercive in $\boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega)$, one uses Céa's lemma.

Error estimates

- If the form a_{ω} is coercive in $\boldsymbol{H}_{0}(\operatorname{curl} ; \Omega)$, one uses Céa's lemma.
- If the form a_{ω} is not coercive, one must prove a uniform discrete inf-sup condition:

$$
\exists C_{\omega}, h_{\omega}>0, \forall h \leq h_{\omega}, \forall \boldsymbol{u}_{h} \in \boldsymbol{V}_{h}^{0}, \sup _{\boldsymbol{v}_{h} \in \boldsymbol{V}_{h}^{0} \backslash\{0\}} \frac{\left|a_{\omega}\left(\boldsymbol{u}_{h}, \boldsymbol{v}_{h}\right)\right|}{\left\|\boldsymbol{v}_{h}\right\|_{\boldsymbol{H}(\mathbf{c u r l} ; \Omega)}} \geq C_{\omega}\left\|\boldsymbol{u}_{h}\right\|_{\boldsymbol{H}(\mathbf{c u r l} ; \Omega)}
$$

- Tedious proof ! -

Error estimates

- If the form a_{ω} is coercive in $\boldsymbol{H}_{0}(\mathbf{c u r l} ; \Omega)$, one uses Céa's lemma.
- If the form a_{ω} is not coercive, one must prove a uniform discrete inf-sup condition.
- In both instances, one concludes that
(Cea) $\exists C>0, \forall h\left(\leq h_{\omega}\right),\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{\boldsymbol{H}(\mathbf{c u r l} ; \Omega)} \leq C \inf _{\boldsymbol{v}_{h} \in \boldsymbol{V}_{h}}\left\|\boldsymbol{E}-\boldsymbol{v}_{h}\right\|_{\boldsymbol{H}(\mathbf{c u r l} ; \Omega)}$.

Error estimates

- If the form a_{ω} is coercive in $\boldsymbol{H}_{0}(\operatorname{curl} ; \Omega)$, one uses Céa's lemma.
- If the form a_{ω} is not coercive, one must prove a uniform discrete inf-sup condition.
- In both instances, one concludes that
(Cea) $\exists C>0, \forall h\left(\leq h_{\omega}\right),\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{\boldsymbol{H}(\mathbf{c u r l} ; \Omega)} \leq C \inf _{\boldsymbol{v}_{h} \in \boldsymbol{V}_{h}}\left\|\boldsymbol{E}-\boldsymbol{v}_{h}\right\|_{\boldsymbol{H}(\mathbf{c u r l} ; \Omega)}$.
- Without any regularity assumption on $\boldsymbol{E}: \lim _{h \rightarrow 0^{+}}\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{\boldsymbol{H}(\mathbf{c u r l} ; \Omega)}=0$.

Error estimates

- If the form a_{ω} is coercive in $\boldsymbol{H}_{0}(\operatorname{curl} ; \Omega)$, one uses Céa's lemma.
- If the form a_{ω} is not coercive, one must prove a uniform discrete inf-sup condition.
- In both instances, one concludes that
(Cea) $\exists C>0, \forall h\left(\leq h_{\omega}\right),\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{\boldsymbol{H}(\mathbf{c u r l} ; \Omega)} \leq C \inf _{\boldsymbol{v}_{h} \in \boldsymbol{V}_{h}}\left\|\boldsymbol{E}-\boldsymbol{v}_{h}\right\|_{\boldsymbol{H}(\mathbf{c u r l} ; \Omega)}$.
- When $\boldsymbol{E} \in \boldsymbol{P} \boldsymbol{H}^{\mathrm{t}}(\Omega)$ and curl $\boldsymbol{E} \in \boldsymbol{P} \boldsymbol{H}^{\mathrm{t}^{\prime}}(\Omega)$ for some $\mathrm{t}, \mathrm{t}^{\prime}>0$, one can bound the right-hand side of (Cea) with respect to $h^{\min \left(t, t^{\prime}, 1\right)}$...

Error estimates

- If the form a_{ω} is coercive in $\boldsymbol{H}_{0}(\operatorname{curl} ; \Omega)$, one uses Céa's lemma.
- If the form a_{ω} is not coercive, one must prove a uniform discrete inf-sup condition.
- In both instances, one concludes that
(Cea) $\exists C>0, \forall h\left(\leq h_{\omega}\right),\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{\boldsymbol{H}(\mathbf{c u r l} ; \Omega)} \leq C \inf _{\boldsymbol{v}_{h} \in \boldsymbol{V}_{h}}\left\|\boldsymbol{E}-\boldsymbol{v}_{h}\right\|_{\boldsymbol{H}(\mathbf{c u r l} ; \Omega)}$.
- When $\boldsymbol{E} \in \boldsymbol{P} \boldsymbol{H}^{\mathrm{t}}(\Omega)$ and curl $\boldsymbol{E} \in \boldsymbol{P} \boldsymbol{H}^{\mathrm{t}^{\prime}}(\Omega)$ for some $\mathrm{t}, \mathrm{t}^{\prime}>0$, one can bound the right-hand side of (Cea) with respect to $h^{\min \left(t, t^{\prime}, 1\right)} \ldots$
When Ω has a boundary of class \mathcal{C}^{2}, one follows [$\S 8$, Dello Russo-Alonso'09] to take into account the approximation of the domain by the meshes.

Error estimates

- If the form a_{ω} is coercive in $\boldsymbol{H}_{0}(\operatorname{curl} ; \Omega)$, one uses Céa's lemma.
- If the form a_{ω} is not coercive, one must prove a uniform discrete inf-sup condition.
- In both instances, one concludes that

$$
\text { (Cea) } \exists C>0, \forall h\left(\leq h_{\omega}\right),\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{\boldsymbol{H}(\mathbf{c u r l} ; \Omega)} \leq C \inf _{\boldsymbol{v}_{h} \in \boldsymbol{V}_{h}}\left\|\boldsymbol{E}-\boldsymbol{v}_{h}\right\|_{\boldsymbol{H}(\mathbf{c u r l} ; \Omega)} .
$$

- One concludes that

$$
\begin{aligned}
\left\|\boldsymbol{E}-\boldsymbol{E}_{h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; \Omega)} \lesssim h^{\min \left(\mathrm{s}, \mathrm{r}, \mathrm{r}^{\prime}\right)} & \left(\|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)}+\|\operatorname{div} \boldsymbol{f}\|_{H^{\mathrm{s}-1}(\Omega)}\right. \\
& \left.+\left\|\boldsymbol{E}_{d}\right\|_{\boldsymbol{H}^{\mathrm{r}}(\Omega)}+\left\|\operatorname{curl} \boldsymbol{E}_{d}\right\|_{\boldsymbol{H}^{\mathrm{r}^{\prime}}(\Omega)}\right)
\end{aligned}
$$

where the exponents $s, r, r^{\prime} \in[0,1] \backslash\left\{\frac{1}{2}\right\}$ are related to the regularity of the data.

Outline

- Introduction/Motivation
- The model and its well-posedness
- A priori regularity of the fields
- Discretization and error estimates
- Numerical illustrations
- Conclusion and perspectives

Numerical results

- Software: Freefem++.
- Example 1: $\Omega:=\{\boldsymbol{x}| | \boldsymbol{x} \mid<1\} ; \omega=1$; material tensors: $\underline{\underline{\boldsymbol{\mu}}}=\operatorname{diag}(1,1,1), \underline{\underline{\varepsilon}}=\operatorname{diag}\left(1+10^{-1} i, 1+10^{-1} i,-2+10^{-1} i\right)$. The sesquilinear form is coercive.
Manufactured solution: $\boldsymbol{E}_{\mathrm{ref}}(\boldsymbol{x})=\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right) \exp (i \pi \boldsymbol{k} \cdot \boldsymbol{x})$, with $\boldsymbol{k}=\frac{1}{\sqrt{14}}\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)$.
The volume data f and surface data g are chosen accordingly.

Numerical results

- Software: Freefem++.
- Example 1: $\Omega:=\{\boldsymbol{x}| | \boldsymbol{x} \mid<1\} ; \omega=1$; material tensors: $\underline{\underline{\mu}}=\operatorname{diag}(1,1,1), \underline{\underline{\varepsilon}}=\operatorname{diag}\left(1+10^{-1} i, 1+10^{-1} i,-2+10^{-1} i\right)$. The sesquilinear form is coercive.

Numerical results

- Software: Freefem++.
- Example 2: $\Omega:=(0,1)^{3} ; \omega=1$; material tensors: $\underline{\underline{\mu}}=\operatorname{diag}(1,1,1), \underline{\underline{\varepsilon}}^{\eta}=\operatorname{diag}(1+i \eta, 1+i \eta,-2+i \eta)$, for $\eta>0$.
Manufactured solution: $\boldsymbol{E}_{\mathrm{ref}}(\boldsymbol{x})=\left(\begin{array}{c}2 \cos \left(\pi x_{1}\right) \sin \left(\pi x_{2}\right) \sin \left(\pi x_{3}\right) \\ -\sin \left(\pi x_{1}\right) \cos \left(\pi x_{2}\right) \sin \left(\pi x_{3}\right) \\ -\sin \left(\pi x_{1}\right) \sin \left(\pi x_{2}\right) \cos \left(\pi x_{3}\right)\end{array}\right)$.
The volume data \boldsymbol{f} and surface data \boldsymbol{g} are chosen accordingly.

Numerical results

- Software: Freefem++.
- Example 2: $\Omega:=(0,1)^{3} ; \omega=1$; material tensors: $\underline{\underline{\mu}}=\operatorname{diag}(1,1,1), \underline{\underline{\varepsilon}}^{\eta}=\operatorname{diag}(1+i \eta, 1+i \eta,-2+i \eta)$, for $\eta>0$.

Numerical results

- Software: Freefem++.
- Example 3: $\Omega:=(0,1)^{3} ; \omega=1$; with a Neumann boundary condition... material tensors: $\underline{\underline{\mu}}=\operatorname{diag}(1,1,1), \underline{\underline{\varepsilon}}^{\eta}=\operatorname{diag}(1+i \eta, 1+i \eta,-2+i \eta)$, for $\eta>0$.

Numerical results

- Software: Freefem++.
- Example 4: $\Omega:=(0,1)^{3} ; \omega=1$; with a Robin boundary condition... material tensors: $\underline{\underline{\mu}}=\operatorname{diag}(1,1,1), \underline{\underline{\varepsilon}}^{\eta}=\operatorname{diag}(1+i \eta, 1+i \eta,-2+i \eta)$, for $\eta>0$.

Outline

- Introduction/Motivation
- The model and its well-posedness
- A priori regularity of the fields
- Discretization and error estimates
- Numerical illustrations
- Conclusion and perspectives

Conclusion

- We solved theoretically and numerically the time-harmonic Maxwell equations with a Dirichlet boundary condition.
- For the problem with a Neumann boundary condition, ie. $\underline{\boldsymbol{\mu}}^{-1} \operatorname{curl} \boldsymbol{E} \times \boldsymbol{n}=\boldsymbol{j}$ on $\partial \Omega$, see [Chicaud-PC-Modave'21]. For the problem with a Robin boundary condition, ie. $\left.\underline{\underline{\boldsymbol{\mu}}}^{-1} \operatorname{curl} \boldsymbol{E}\right)_{T}+\underline{\underline{\boldsymbol{\alpha}}}^{\partial \Omega}(\boldsymbol{E} \times \boldsymbol{n})=\boldsymbol{g}$ on $\partial \Omega$, see [PhD-Chicaud'2x].

Conclusion

- We solved theoretically and numerically the time-harmonic Maxwell equations with a Dirichlet boundary condition.
- For the problem with a Neumann boundary condition, ie. $\underline{\underline{\boldsymbol{\mu}}}^{-1} \operatorname{curl} \boldsymbol{E} \times \boldsymbol{n}=\boldsymbol{j}$ on $\partial \Omega$, see [Chicaud-PC-Modave'21]. For the problem with a Robin boundary condition, ie. $\left.\underline{\underline{\boldsymbol{\mu}}}^{-1} \operatorname{curl} \boldsymbol{E}\right)_{T}+\underline{\underline{\boldsymbol{\alpha}}}^{\partial \Omega}(\boldsymbol{E} \times \boldsymbol{n})=\boldsymbol{g}$ on $\partial \Omega$, see [PhD-Chicaud'2x].
- For the problem with a mixed boundary condition:

2 variational formulation, see [Back-Hattori-Labrunie-Roche-Bertrand'15];

- compact embedding, see [Fernandes-Gilardi'97];
- a priori regularity, see [Jochmann'99] for partial results.

Conclusion

- We solved theoretically and numerically the time-harmonic Maxwell equations with a Dirichlet boundary condition.
- For the problem with a Neumann boundary condition, ie. $\underline{\underline{\boldsymbol{\mu}}}^{-1} \operatorname{curl} \boldsymbol{E} \times \boldsymbol{n}=\boldsymbol{j}$ on $\partial \Omega$, see [Chicaud-PC-Modave'21]. For the problem with a Robin boundary condition, ie. $\left.\underline{\underline{\boldsymbol{\mu}}}^{-1} \operatorname{curl} \boldsymbol{E}\right)_{T}+\underline{\underline{\boldsymbol{\alpha}}}^{\partial \Omega}(\boldsymbol{E} \times \boldsymbol{n})=\boldsymbol{g}$ on $\partial \Omega$, see [PhD-Chicaud'2x].
- For the problem with a mixed boundary condition:
- variational formulation, see [Back-Hattori-Labrunie-Roche-Bertrand'15];
- compact embedding, see [Fernandes-Gilardi'97];
- a priori regularity, see [Jochmann'99] for partial results.
- "Limit case" of a hyperbolic metamaterial, ie. $\underline{\underline{\varepsilon}}^{0}=\operatorname{diag}(1,1,-2)$, see [PC-Kachanovska-preprint] for some preliminary results.

Conclusion

- We solved theoretically and numerically the time-harmonic Maxwell equations with a Dirichlet boundary condition.
- For the problem with a Neumann boundary condition, ie. $\underline{\underline{\boldsymbol{\mu}}}^{-1} \operatorname{curl} \boldsymbol{E} \times \boldsymbol{n}=\boldsymbol{j}$ on $\partial \Omega$, see [Chicaud-PC-Modave'21]. For the problem with a Robin boundary condition, ie. $\left.\underline{\underline{\boldsymbol{\mu}}}^{-1} \operatorname{curl} \boldsymbol{E}\right)_{T}+\underline{\underline{\boldsymbol{\alpha}}}^{\partial \Omega}(\boldsymbol{E} \times \boldsymbol{n})=\boldsymbol{g}$ on $\partial \Omega$, see [PhD-Chicaud'2x].
- For the problem with a mixed boundary condition:
- variational formulation, see [Back-Hattori-Labrunie-Roche-Bertrand'15];
- compact embedding, see [Fernandes-Gilardi'97];
- a priori regularity, see [Jochmann'99] for partial results.
- "Limit case" of a hyperbolic metamaterial, ie. $\underline{\underline{\varepsilon}}^{0}=\operatorname{diag}(1,1,-2)$, see [PC-Kachanovska-preprint] for some preliminary results.
- Adding a Domain Decomposition Method "layer" is possible, using the formalism developed for the problem with a Robin boundary condition, see [PhD-Chicaud'2x].

Thank you for your attention.

Domain of the \mathfrak{A}-type

A domain Ω is said of the \mathfrak{A}-type if, for any $\boldsymbol{x} \in \partial \Omega$, there exists a neighbourhood \mathcal{V} of \boldsymbol{x} in \mathbb{R}^{3}, and a \mathcal{C}^{2} diffeomorphism that transforms $\Omega \cap \mathcal{V}$ into one of the following types, where $\left(x_{1}, x_{2}, x_{3}\right)$ denote the cartesian coordinates and $(\rho, \tilde{\omega}) \in \mathbb{R} \times \mathbb{S}^{2}$ the spherical coordinates:

1. $\left[x_{1}>0\right]$, i.e. \boldsymbol{x} is a regular point;
2. $\left[x_{1}>0, x_{2}>0\right]$, i.e. \boldsymbol{x} is a point on a salient (outward) edge;
3. $\mathbb{R}^{3} \backslash\left[x_{1} \geq 0, x_{2} \geq 0\right]$, i.e. \boldsymbol{x} is a point on a reentrant (inward) edge;
4. $[\rho>0, \tilde{\omega} \in \tilde{\Omega}]$, where $\tilde{\Omega} \subset \mathbb{S}^{2}$ is a topologically trivial domain. In particular, if $\partial \tilde{\Omega}$ is smooth, \boldsymbol{x} is a conical vertex; if $\partial \tilde{\Omega}$ is a made of arcs of great circles, \boldsymbol{x} is a polyhedral vertex.
